Efficient Learning-based Graph Simulation for
Temporal Graphs

1% Sheng Xiang
Australian Artificial Intelligence Institute
University of Technology Sydney
Sydney, Australia
sheng.xiang @uts.edu.au

4™ Xiaoyang Wang
School of Computer Science and Engineering
University of New South Wales
Sydney, Australia
xiaoyang.wangl @unsw.edu.au

Abstract—Graph simulation has recently received a surge
of attention in graph processing and analytics. In real-life
applications, e.g. social science, biology, and chemistry, many
graphs are composed of a series of evolving graphs (i.e., temporal
graphs). While most of the existing graph generators focus on
static graphs, the temporal information of the graphs is ignored.
In this paper, we focus on simulating temporal graphs, which
aim to reproduce the structural and temporal properties of
the observed real-life temporal graphs. In this paper, we first
give an overview of the existing temporal graph generators,
including recently emerged learning-based approaches. Most of
these learning-based methods suffer from one of the limitations:
low efficiency in training or slow generating, especially for
temporal random walk-based methods. Therefore, we propose an
efficient learning-based approach to generate graph snapshots,
namely temporal graph autoencoder (TGAE). Specifically, we
propose an attention-based graph encoder to encode temporal
and structural characteristics on sampled ego-graphs. And we
proposed an ego-graph decoder that can achieve a good trade-
off between simulation quality and efficiency in temporal graph
generation. Finally, the experimental evaluation is conducted
among our proposed TGAE and representative temporal graph
generators on real-life temporal graphs and synthesized graphs.
It is reported that our proposed approach outperforms the state-
of-the-art temporal graph generators by means of simulation
quality and efficiency.

Index Terms—Graph Simulation, Temporal Graphs, Graph
Neural Network.

I. INTRODUCTION

Due to the graph’s strong expressive power, a host of
researchers in fields such as e-commerce, cybersecurity, social
networks, military, public health, and many more, are turning

* Corresponding author: Dawei Cheng (dcheng @tongji.edu.cn)
This work was supported by the National Science Foundation of China (Grant
no. 62472317), the Fundamental Research Funds for the Central Universities,
the Shanghai Science and Technology Innovation Action Plan Project (Grant
no. 22YS1400600 and 24692118300). Ying Zhang is supported by ARC
LP210301046 and DP230101445. Xiaoyang Wang is supported by ARC
DP230101445 and DP240101322.

2" Chenhao Xu
School of Computer Science
Peking University
Beijing, China
xuchenhao @stu.pku.edu.cn

3" Dawei Cheng”
School of Computer Science and Technology
Tongji University
Shanghai Artificial Intelligence Laboratory
Shanghai, China
dcheng @tongji.edu.cn

5" Ying Zhang
Australia Artificial Intelligence Institute
University of Technology Sydney
Sydney, Australia
ying.zhang @uts.edu.au

to graph modeling to support real-world data analysis [1]-
[6]. An important line of research for graph processing and
analytics is the simulation of graphs which is used for many
purposes such as tackling the inaccessibility of the whole real-
life graphs and a better understanding of the distribution of
graph structures and other features [7]-[9]. There is a long
history of study for the graph simulation in many research
fields such as Database and Machine learning [6], [10], [11].
Recently, many research efforts have been devoted to design
advanced generative models which can significantly enhance
the simulation quality, thanks to the recent development of
deep learning techniques. Nevertheless, we notice that most
of the existing works aim to simulate the static graphs. While
in many real-life applications, the data are naturally modeled
as temporal graphs (a.k.a time-evolving graphs) where the
graph evolves with the time. For instance, in the online
finance networks and e-commerce networks [12], [13], the
edges consists of a sequence of transactions with timestamps
for users or products. In the location-based service networks
with regarding to the Point of Interests (POIs) [14], an edge
corresponds to a visit of an user towards a POI (e.g., a
restaurant) at a particular time. In these applications, it is
critical to capture the evolution of the graphs over the time;
that is, the structure of the real graph will evolve with time,
and hence the edge generative probability distribution of the
nodes on the graph will change with the passage of time.
For most graph simulators, which do not properly consider
the temporal information of the graphs, a straightforward way
is to simulate the temporal graphs based on some particular
timestamps, i.e., learn the snapshots of the evolving graph at
these timestamps. Unfortunately, this is not feasible in practice
because it is cost-prohibitive to learn and simulate many
snapshots of the graphs. Thus, to effectively and efficiently
support temporal graph simulation in many key applications
such as the generation of new drug molecules [15], chemical

o Jo o
/ / % g
9 5 ¥V o0 xTe4d
\ ¢ | &9 o \ 6-<(Q,o
&"do &"‘io o-0 &O:do 0-0
d d d
t=t, t=t, t=t,
Fig. 1. An example of time-evolving graph.

reaction pathway simulation [16], router load balancing [9],
and pandemic trajectory generation [17], it is essential to
develop advanced graph generative models which can capture
both structure and time properties of the time-evolving graphs.

Motivation. We can store the time-evolving graph as a col-
lection of graph snapshots (i.e. a series of time-stamped static
graphs). The collection of graph snapshots contains all edges,
nodes, and their corresponding timestamps. Specifically, as
shown in Figure 1, after a period of time, several temporal
nodes and edges are added to this time-stamped graph snap-
shot. The traditional way to model such a time-evolving graph
is to aggregate timestamps into a series of snapshots. There
is also an alternative way for dynamic temporal edges, i.e.
temporal random walks, to model a time-evolving graph. Some
recently developed learning-based temporal graph generative
methods [18]-[20], namely 7agGen and its successors, recon-
structs a set of temporal random walks to assemble a synthetic
graph. However, a disadvantage comes from the inevitable bias
of decomposing the time-evolving graphs into a set of temporal
random walks. In this case, we have to live with the extra
time and space required by a lot of operations of random walk
sampling. If the number of walks is too large, the large number
of training samples will bring unbearable computational costs
when training deep generative models; if the number of walks
is too small, the rich temporal structure properties may be lost
during model training. The other disadvantage comes from
the O(T?) factor in the time and space complexity analysis
of TagGen where T is the number of distinct timestamps.
complexity of time consumption and memory usage. This
directly limits the efficiency and the scalability of the graph
simulation model, especially when we need to simulate fine-
grained time-evolving graphs.

This motives us to develop a new generative model for
time-evolving graphs with better efficiency (scalability) and
simulation quality. Particularly, to better capture both the
structure and temporal information of the graph, we design
a new temporal ego-graph based sampling approach for the
temporal graph and we re-weight the input temporal nodes
according to the degree of the node, so as to give priority
to learning the local temporal structure of the representative
nodes. For these representative nodes, we sample their ego-
graphs to learn the representative temporal graph structure.
We encode and reconstruct the ego-graphs’ structure through
the temporal graph attention mechanism. As to ego-graphs

with k radius, we stack k temporal graph attention layers to
layer by layer transmit messages from the periphery nodes to
the center nodes. After that, we use the cross-entropy loss to
learn directly from the representative temporal graph structure.
We also designed a GPU-friendly parallel temporal ego-graph
training strategy and the corresponding approximate objective
function to reduce the number of steps of model training and
achieve efficient model training. Specifically, we combine all
the sampled ego-graphs to assemble k bipartite computation
graphs to parallelize the computation process and reduce re-
dundant repeats. After our improvements, the number of steps
of model training is O(%), and the space consumption of
model training is O(nx (T'+n;)), where n, denotes the hyper-
parameter of the number of sampled initial nodes and n is
the number of graph nodes. As demonstrated in the empirical
study, our new approach can achieve much better simulation
quality compared to the state-of-the-art technique. Moreover,
the new approach also win out from space consumption,
efficiency and scalability perspectives.

Contribution. Our principal contributions in this paper are
summarized as follows:

e We propose a new ego-graph based sampling strategy
for the temporal graph, which has a stronger expressive-
ness to better capture the local structure and temporal
properties of the temporal graph. We also design an
efficient ego-graph sampling strategy and GPU-friendly
parallelization ego-graph training strategy, as well as
approximate optimization objectives, to achieve scalable
model training.

o For better simulation of temporal graphs, we design
a Temporal Graph Autoencoder (TGAE). Specifically,
temporal node messages are passed from peripheral nodes
to the central node in the ego-graph through a temporal
graph attention mechanism. Then, the entire ego-graph
is reconstructed evolutionarily from the central node
through a variational autoencoder.

« Through the extensive experiments on both real-life and
synthetic time-evolving graphs, we boast that our new
approach significantly outperforms the state-of-the-art in
terms of temporal graph simulation quality, efficiency,
scalability and space consumption.

Roadmap. The rest of the paper is organized as follows. In
Section III, we formally define the problem and provide the
related works of this paper. We then present the details of
our proposed graph generator and introduce the optimizing
targets in Section IV. Comprehensive experimental results
for temporal graph generators are presented in Section V.
Section VI concludes the paper.

II. RELATED WORKS
This section presents a review of recent literature on tem-
poral graph learning and graph generative models.
A. Temporal Graph Learning

Recently, a large number of work has appeared in temporal
graph learning. In these works, temporal graphs can be repre-

sented by a set of timestamped nodes and edges. For instance,
Spatio-temporal graph convolution networks are leveraged
on traffic forecasting [21]. The linkage evolution process is
leveraged on temporal graph representation learning [22]. The
graph attention mechanism is proposed to focus on the crucial
part of the graph data for time-evolving graph learning [23].
Dynamic parameters of graph convolution networks are pro-
posed to improve the temporal graph embeddings [24]. [25]
decouples model inference and graph computation to alleviate
the damage of the heavy graph query operation to the speed
of model inference. [26] proposes the hyperbolic temporal
graph network (HTGN) that fully takes advantage of the
exponential capacity and hierarchical awareness of hyperbolic
geometry. However, separately focusing on temporal property
and topological structure limits the embedding quality. To
address this issue, our encoder aims to encode the temporal
and topological structure together into one embedding. In
this paper, we propose to use temporal graph attention as
the encoder component of our proposed temporal graph auto-
encoder (TGAE).

B. Graph Generative Model

Early graph simulation problems were often solved by
models for static graphs. For instances, random graph
model [27], [28], small world graph [29], [30], preferential
attachment [31]-[33], stochastic blockmodels [8], [34], [35].
To improve the quality of graph simulation, many deep
graph generative models have recently been proposed to
learn graph generative distributions directly from observed
graphs. For instances, SBMGNN [36] uses a graph neural
network to parameterize the overlapping stochastic block-
models, GraphRNN [37] uses a recurrent neural network
to learn to draw a graph from scratch, and NetGAN [38§]
uses a generative adversarial network to learn the generative
distribution of random walks. However, these works ignore
the dynamic nature of real-world graphs, i.e., the topology
structure of a graph evolves over time. To solve this problem,
for example, TagGen [18] and TGGAN [19] were recently
proposed to use generative adversarial networks (GANs) to
simulate temporal graphs, and make learning-based methods
achieved the best temporal graph simulation quality. Recently,
there has been a work on temporal graph simulation [10],
which is essentially different from our study, as they leverage
simulation on temporal graph pattern matching. Different from
generating random walks, our method directly learns the
generative distribution of observed temporal graphs. We also
proposed an efficient learning strategy that achieves a good
trade-off between simulating quality and efficiency.

C. Temporal Graph Generator

Several methods have been proposed for temporal graph
generation. The Motif Transition Model [39] models the
transition process of dynamic motifs in graphs, providing a
simple and scalable simulator for dynamic graphs. Similarly,
RTGEN++ [40] models the evolution process of degree dis-
tributions over time, also achieving high scalability. Temporal

TABLE I
THE SUMMARY OF SYMBOLS

[Symbol | Definition |
the input features of node occurrences

the probability of generating an edge
the total number of nodes

the total number of edges

the number of timestamps in G

IR b

o

; -
={v;"%, .., the set of temporal nodes
; Tc,
={e;", em™}
N(-

SHRS

the set of temporal edges
the neighborhood function
d the number of dimension

Edge Distribution (TED) [41] model addresses the challenge
of considering temporal community attributes for generating
temporal graphs.

However, compared with non-learning-based methods,
learning-based methods have significantly improved the gen-
eration quality of temporal graphs. For example, TagGen [18]
employs a temporal random walk-based approach to capture
temporal dependencies by generating new temporal random
walks based on those sampled from observed temporal graphs.
Building upon TagGen, TGGAN [19] introduces a generative
adversarial network framework, where a generator synthesizes
new temporal random walks and a discriminator evaluates
their validity. In addition, DYMOND [42] models dynamic
motifs on graphs using a parameterized model, aiming to
capture temporal motif distributions accurately. However, these
methods face limitations in computational complexity. For
example, the generation process of TagGen and TGGAN has
a complexity of O(n? x T?), and the training and inference
time complexity of DYMOND is O(n? x T'). TIGGER [20]
further improves the generation quality and scalability based
on TagGen, reducing the complexity to O(n x M), where
M 1is the number of edges. However, TIGGER’s generation
model is limited by the inherent constraints of random walk-
based methods, requiring a large number of random walks to
achieve high-quality generation.

Unlike generating random walks, our proposed Temporal
Graph Auto-Encoder (TGAE) directly learns the generation
distribution of the observed temporal graph, with a computa-
tional complexity of O(n? x T'). We also propose an efficient
parallel learning strategy, achieving a good balance between
simulation quality and efficiency. After parallelization, the
computational steps of our method can be reduced to O(nxT).

III. PRELIMINARY

Table I summarizes the symbols introduced in this paper.
In this section, we formalize the graph generation problem
in the temporal graph [18], [43]. Given a temporal graph G,
we model the temporal graph as a series of graph snapshots
{G"%,...,GT}, which include temporal nodes {vi”l , ...,vf{’"
and temporal edges {etlcl ...,evem b The definitions of tempo-
ral nodes and edges are as follows:

Definition 1. Temporal Nodes and Edges. In a temporal
graph, a node v; is associated with a node id i and timestamps

v; occurred with v; = {vi*,v!*,...}. Same as temporal node
v, an edge e; is associated with a timestamp t, and two
temporal nodes u's and v'®i. For temporal nodes and edges
in the same timestamp t, the set of nodes and edges are defined

as V* and E, respectively.

We choose to model the temporal graph as a series of
graph snapshots for two main reasons. First, capturing the
state of the graph at discrete time intervals aligns well with
the periodic nature of some dynamic graphs. Second, this
representation simplifies the temporal dynamics into a series
of static graphs, making it more tractable for certain general
graph generative methods, e.g., VGAE [44] and NetGAN [38].
While previous temporal graph generation work [18] describes
the temporal graph as a set composed of timestamped edges
and nodes, we acknowledge that such representations can
provide a more granular view of the graph’s evolution. Our
methodology is adaptable and can support this representation
as well. If a graph is provided in this format, our approach
can be extended to process and generate graphs that reflect the
temporal changes among all time stamps.

Given the sets of temporal nodes V and temporal edges F,
the definitions of temporal graph and graph snapshots are as
follows:

Definition 2. Temporal Graph. A temporal graph G =
{GY,...,GT} is formed by a series of temporal graph snap-
shots Gt = (V' EY) with t = 1...T. And a snapshot G* is as-
sociated with a timestamp t, temporal nodes V' = {v} v, ...},
and temporal edges B = {e}, e}, ...}.

In existing graph generators [37], [38], [45], the graph
neighborhood N(v) of node v is defined as static one. Here,
we generalize the definition of graph neighborhood to the
temporal graph, which is defined as follows:

Definition 3. Temporal Neighborhood. Given a temporal
node v, the neighborhood of v' is defined as N(v') =
{vH] fsp(ub,vt) <dn, [ty —tyt| <t} where fsp(-|-) denotes
the shortest path length between two nodes, dn and tw denote
the path length and time window length, respectively, which
are the hyper-parameters.

To represent the neighborhood in temporal graph, the previ-
ous work defines k-length temporal walks [18], [46]. Different
from them, we relax this definition to the ego graph with a
radius of k, so that we can capture the local temporal neighbor
structure of the observed graph. We consider all the neighbor
nodes within the time window of the graph and take these
nodes and their corresponding temporal edges as k-radius
temporal ego-graph, which is defined as follows:

Definition 4. k-Radius Temporal Ego-Graph. Given a tem-
poral node v', a k-radius temporal ego-graph Gegg(vt) is

composed of temporal nodes V,g,(v') and edges Ecg4o(v')
corresponding to the temporal neighborhood of v, i.e., N(v?).

Problem statement. In this paper, we focus on the graph
simulation task for directed temporal graphs. The temporal

graph generator, i.e., the proposed method for graph simulation
takes the topology structure with/w.o. node features as input.
We formally define the temporal graph generation problem as
follows:

Input: We use a temporal graph G = {V,E} as the input of
temporal graph generator for simulation.

Output: The generated temporal graph G' = {V' E'} with
highly preserved both structural and temporal properties from
observed temporal graph.

Evaluation of preserving temporal structure. The key of the
temporal graph simulation is to keep the structure information
along the whole involving procedure. Ideally, for every times-
tamp, the observed time-involving graph and the simulated
corresponding graph have the same distribution. To verify the
performance of preserving the temporal structure, we use the
following two evaluation approaches for the temporal graph
generative algorithms:

(1) calculating the difference of graph statistics for the snap-
shots under the same timestamp. Specifically, we randomly
choose a timestamp and accumulate the nodes and edges
generated from the initial timestamp to the current timestamp
to get the generated graph snapshot. Similarly, the snapshot of
the original graph can be obtained by accumulating temporal
edges and nodes in the same way. The difference between the
generated snapshot and the original snapshot can be obtained
by comparing the differences in graph statistics between the
two. A distinct description of each graph statistic is introduced
in Table III of Section V.

(2) comparing the difference in temporal motif distribution.
Specifically, after generating the last timestamp, we get the
snapshot of the whole temporal graph. By computing the
temporal motif distribution in graph snapshot (e.g., via count-
ing the 3-edge temporal motifs [43]), we can get the motif
distribution of the generated graph and the original graph.
Then we use a Gaussian kernel of the total variation (TV)
to measure the distance between the two motif distributions.
After that, we use the popular evaluating metric Maximum
Mean Discrepancy (MMD) to measure the similarity of two
distributions. Assuming that p and ¢ denote the original
graph’s motif distribution and the generated graph’s, respec-
tively, the measurement of two distribution is formulated as
follows:

TV(p, q) =Eil[|mp (i) — mq(3)]]]
MMD?(p||g) =Eaynp[k(TV(2,9))] + Ea ynq k(TV (2, 7))]
—2EonpynqlK(TV (2, 9))]-
(1)
where k denotes the Gaussian kernel and m,(i) denotes

probability of the ¢-th motif in temporal graph distribution
.

IV. OUR APPROACH

In this section, we introduce the detailed implementation
of our proposed Temporal Graph Auto-Encoders (TGAE),
including ego-graph sampling, temporal graph encoding, and

TGAT
Encoding

Ego-graph

Temporal _J
Sampling

ego-graphs

Hifiden —
Variables

Graph
Assembling

Ego-graph
Decoding

Generated _|
ego-graphs

Fig. 2. The framework of our proposed TGAE. TGAE is composed of four parts: (1) ego-graph sampling, (2) temporal graph encoding, (3) ego-graph

decoding, and (4) temporal graph assembling.

ego-graph decoding, and show how our TGAE generate a new
temporal graph from observed temporal graphs.

A. Model Architecture

As illustrated in Figure 2, our proposed TGAE is composed
of four parts: ego-graph sampling, temporal graph encoding,
ego-graph decoding, and temporal graph assembling. Given
a temporal graph G = {G",...,GT}, we first convert all
snapshots into one temporal adjacency matrix A;—1.p €
{1,0}T*7x"_Then we sample temporal k-radius ego-graphs
and truncate the width and depth of sampled subgraphs for
efficient model training. After that, we leverage temporal
graph attention networks (TGAT) on neighbor-level tempo-
ral structures to obtain hidden variables for each temporal
node. After temporal graph encoding, the ego-graph decoding
module generates an ego-graph corresponding to each tem-
poral node’s hidden variables. Finally, we use the generated
edge probabilities to assemble a temporal graph score matrix
Si—1.7 € RTX"X"_Given a temporal graph score matrix, we
sample edges to generate new temporal graphs.

B. Ego-Graph Sampling

To extract local temporal structure, we leverage ego-graph
sampling for temporal graphs. Given the temporal graph adja-
cency matrix A,—;.7, we first separately load each snapshot’s
node features X(* ¢ R7*din corresponding to its timestamp .
Then, algorithm 1 shows the procedure of sampling a k-radius
ego-graph for each temporal node u!. Specifically, we first
choose the representative temporal node as the central node
of each ego-graph. Then we recursively sample the neighbor
nodes, where the new nodes are sampled from the neighbors
of the early sampled nodes. To reduce the training time
consumption of our proposed model, we truncate the number
of neighbors of nodes whose degrees exceed the threshold to
achieve the trade-off between efficiency and effectiveness. This
approach prevents the neighborhood graphs from exploding in
size, even in dense regions of the graph. Specifically, when we
sample the neighbors of the nodes, we sample several times
with replacement and get a limited number of nodes as the
neighbors of the node in the ego-graph. Algorithm 1 shows
the detailed procedure of preparing the ego-graphs and node
features as input data for our learning-based model. Note that
our proposed method set the node identity numbers as default
node features.

Initial Temporal Node Sampling. To model a complete
temporal graph structure, we propose a strategy to select

Algorithm 1: Sampling k-Radius Temporal Ego-Graph

1 Function NodeSampling (nodeset, threshold)
Nodes< 0; 4, u < 0;
if length(nodeset)< threshold then
| return nodeset;
else

foreach i € 1 : threshold do

u +— random.choice(nodeset);
L Nodes.insert(u);

RN B N

9 return Nodes;

10 Function k-EgoGraph (G, V', k, th)

11 ego, nodeset < 0;

12 if kK # I then

13 nodeset < NodeSampling (N(v?), th);
14 foreach u' € nodeset do

ego « k-EgoGraph (G, uf, k—1);
nodeset.insert(ego.nodes);

15
16

17 €go — é.subgraph(nodeset);

18 return ego;

19 else

20 nodeset < NodeSampling (N(v?), th);
21 €go G’.subgraph(nodeset);

22 return ego;

23 Function EgoGraphDataLoader (G, Xy—1.7, k)
24 EgoGraphs, Nodefeatures < ();
25 foreachi € 1:7T do

26 X e Xyopp((nx (i —1) +1:nxi),:);
27 ego, nodefeat < 0;

28 foreach v € 1 : n do

29 ego « k-EgoGraph (G, v%, k);

30 EgoGraphs.insert(ego);

31 nodefeat <— X (ego.nodes, :);

32 Nodefeatures.insert(nodefeat);

33 | return EgoGraphs, NodeFeatures

representative temporal nodes. A naive approach is to sam-
ple all temporal nodes according to a uniform distribution,
however, this strategy tends to learn to generate unimportant
edges [47]. To focus on important edges to generate a high-
quality temporal graph, we propose to use the probability

99

(@) k-radius temporal ego-graph (k=2) : (b) temporal edge importance of ut
___________________ -

ux:+1'x:

(c) temporal edge importance of xt

(d) temporal edge importance of ut

Fig. 3. The illustration of the k-radius temporal ego-graph. The upper left
part shows the ego-graph with the center temporal node u?. The other three
parts shows the edge importances calculated by k stacked temporal graph
attention (TGAT) layers.

distribution based on temporal node degree as the initial
temporal node sampling strategy. The sampling strategy is
formulated as follows:

d@gut
va 6\7 degvt

where deg,: denotes the degree of temporal node u?, i.e., the
temporal neighbors associated with u?. Assuming that in each
epoch we sample n, temporal nodes as initial temporal nodes,
we sample ng ego-graphs as the input of our encoding process.
The set of initial nodes is represented as V..

Unlike in random walk-based work, we reweight temporal
nodes by their temporal degrees (i.e., the number of first-
order temporal neighbors) to efficiently simulate high-quality
temporal graphs. This re-weighting will allow our model to
preferentially learn to generate neighbors of key temporal
nodes. Besides, the neighbors of non-critical nodes contain a
higher proportion of outlier points. Therefore, our initial node
sampling strategy reduces the effect of outliers, resulting in
efficient and effective model training with hardly sacrificing
simulating quality.

P(u') = 2)

C. Temporal Graph Attention Encoding

Given the temporal graph Gogo(v!) = (Vego(v?), Eego(vt))
and temporal node features Xcg, € R7eso Xdin where Nego
denotes the node number of ego graph and d;,, denotes the
dimension of input features, we propose to employ temporal
graph attention mechanism on our sampled ego graphs. In
particular, we obtain the hidden variables of the center node
ut of the ego graph through leveraging temporal attention
mechanism to aggregate messages from graph structures and
temporal neighbors, where d.,. denotes the dimension of
hidden variables after encoding process. For each temporal
ego graph, the message aggregating is formulated as follows:

hut :TGATenc (Xego | ‘Zigo (ut) ’ Eego (ut))

3)
=Concat(TgaHead,, ..., TgaHead,,,)W,

where h,: € R*datt denotes one row of hidden variables
of the temporal graph attention encoding layer, i.e., hidden
variables on temporal node u!, and W, € Rlsadencxdat:
denotes the output projection matrix, h¢g, denotes the number
of heads, d,; is the dimension of attention vector, and each
head of temporal graph attention layer TgaHead; € R!*dene
is formulated as follows:

TgaHead, = o(Z e ey)
vteN(ut)

where o denotes the activation function and ait ,t denotes
the importance of temporal edge (u,v*) in i-th head, which
is formulated as follows:

o exp(LeakyReLU(a] [h:||h,¢]))
el Y kien(ot) exp(LeakyReLU(af [hyt|[h,e]))

(&)

where a; € R2%ne denotes the attention vector of the i-
th attention head, and LeakyReLU denotes the non-linear
activation function with a negative input slope o = 0.2.

From the example in Figure 3, we can intuitively under-
stand our temporal node coding process: (1) the input of the
encoding process is the sampled ego-graph, which is shown
in Figure 3 (a), where we assume that the value of k is 2; (2)
the first TGAT layer calculates the importance « of second-
order neighbors (such as z'~! and u‘~? in Figure 3 (b)) to
first-order neighbors (such as u!~! in Figure 3 (b)); (3) the
second TGAT layer calculates the importance 5 of first-order
neighbors to the central node u!; (4) in Figure 3 (d), the
central node u! outputs the representation of this ego-graph. In
the actual model training, we added self-loops to all temporal
nodes to pass messages to themselves.

Parallel Ego-graph Training. To reduce the time consump-
tion of the encoding process, we combine multiple ego-graphs
for parallel node encoding to reduce computation steps from
O(nT) to O(%L), where b denotes the parallel number of
temporal ego-graphs, i.e., batch size. For efficient training, we
set the batch size as the size of initial sampled center node
set with b = |V,| = n,. Therefore, the computation step is
parallelized into O(Z—T) As shown in Figure 4, we put all the
ego-graphs together and generate k-bipartite graphs by vertical
splitting. These bipartite graphs represent a set of temporal
ego-graph neighbors of order 1 to k. Specifically, we first
use Sp to represent the center node set of the temporal ego-
graphs. Then, we use 51, ..., Sk to respectively accommodate
the k-order neighbors of the center nodes of these temporal
ego-graphs. After that, we index the source nodes of the
bipartite graph in S; and the target nodes of the bipartite
graph in Sj_i. After getting the source and target, we get
the k-bipartite computation graphs. We stack & TGAT layers to

Nk
@9

@@@::f:

(a) Merge all k-radius temporal ego-graphs (k=2)

byl

(b) Convert ego-graphs into k-bipartite computatlon graph (k=2)

Fig. 4. The illustration of the k-bipartite computation graphs. The upper
part shows the initial k-radius temporal ego-graphs. The lower part shows the
k-bipartite computation graphs, which are used for model training. In each
bipartite computation graph, the results of the target nodes can be computed
concurrently.

achieve message passing on the k-bipartite computation graph,
and finally, get the representation of the central temporal node.

To further reduce the space consumption, we use a trun-
cation mechanism to control space usage and ignore repeated
nodes each time a new node is inserted into Sj. In Algo-
rithm 1, to control the worst-case space requirement, we use
th as the threshold. Once the total number of neighbors of
a temporal node exceeds th, the algorithm converts from all
neighbor sampling strategy to th-neighbor sampling strategy,
and merge all the temporal ego-graphs into k-bipartite com-
putation graphs for the sampled neighbor nodes instead of all
the neighbor nodes.

D. Ego-Graph Decoding

To reconstruct local temporal structure distribution, we
leverage ego-graph decoding process to infer the probablistic
generative model for each temporal node. Given the hidden
variables of temporal node h,:, we first use two Multi-
Layer Perceptrons (MLP) to infer the parameters p and o of
the prior distribution A (y,0%). Then algorithm 2 shows the
procedure of decoding the edge probabilities of a k-radius
ego-graph for each temporal node u!. The detailed graph
generation process from edge probabihty will be introduced
in the subsection IV-G. In summary, the decoding process has
a space complexity of O(n x (T + ns)), where ng denotes
the number of initial temporal nodes. Assembling is required

Algorithm 2: Decoding k-Radius Temporal Ego-Graph

1 Function k-EgoGraphDecoding (éego(ut), h,:,
Xego; k)

2 mu < MLP,,(X¢g0);

3 sigma <— MLP,2(Xc40);

4 noise <— random.normal(Xcg,.shape);

5 Z <+ mu + sigma * noise;

6 return EdgeProbability (Gego(ut), h,:, Z,
k),

7 Function EdgeProbability (éego(ut), h,, Z, k)

8 | p,h, problist < 0;

9 if k # 1 then

10 foreach v’ € N(u') do

1 h <+ h,: + Z(v',:);

12 p <EdgeProbability (Gego(vt), h, Z,

k—1);

13 problist.extend(p);

14 return problist,

15 else

16 h <+ hy: + Z(u',:);

17 p + softmax(h X W ge. + bgec);

18 problist.insert(p);

19 return problist;

to make the edge probability estimated from the whole graph.
The complete learning process, including encoding, decoding,
and assembling, requires a time complexity of O(n? x (T))).
The parallelization happened when encoding from multiple
ego-graphs, decoding for temporal edges, assembling all the
probability from one node to all other nodes. After paralleliza-
tion, the computation steps are O(n x T') when the number of
nodes does not exceed the number of threads (e.g., cuda cores
in a NVIDIA GPU).

E. Optimization Strategy

Batch Gradient Descending. We jointly optimize encoder
and decoder’s parameters by minimizing the variational lower
bound as follows:

PSir)= [[PSi=ir)iy

e, EA—1.T

1 T N
~T DD Aurlog(P(

t=1u=1

St.u)) + KL(q(Z[X)[|p(Z))

(6)

where P(S;—1.7) denotes the generated score matrix from de-
coding module and KL(+||-) is the Kullback-Leibler divergence
between two distributions.

Mini-batch Gradient Descending and Approximate Loss.
In practice, it is more efficient to use a mini-batch gradient
descending to update the model’s parameters. Particularly,
we optimize the model parameters through mini-batch data,

i.e., randomly sampled ego-graphs and corresponding node
features, achieve global parameter training, and can train a
model with satisfactory generalization and robustness in less
time. In addition, our KL-divergence calculation is still carried
out on all nodes. Therefore, in our TGAE implementation,
we update the parameters with an approximate loss function,
which is formulated as follows:

1
Etgae = _ni Z Aut IOg(P(St,u)) + KL(q(Z|X)Hp(Z))
s UtEVs

)

where V, denotes the set of sampled initial temporal nodes
and n, denotes the size of V. By adjusting the value of ng,
we can achieve the trade-off between generating high-quality
temporal graphs and fast model training.

F. Model Variants

Ego-Graph Sampling Variant. Our model can be generalized
to random walk-based variants, only by reducing the neighbor
threshold th to less than 2 in Algorithm 1. In this case, the ego-
graph obtained by our temporal ego-graph sampling strategy
is a chain structure, that is, a temporal random walk on the
temporal graph. In this variant, we fix the whole architecture
of TGAE so that it is consistent with the full version, except
for the threshold of ego-graph neighbor sampling.

Initial Node Sampling Variant. In addition to ego-graph
sampling strategy, our initial node sampling strategy can
also be modified to a uniform distribution based sampling
strategy. Under this node sampling strategy, our model learns
to reconstruct every edge in the temporal graph without bias. In
this variant, only the initial node sampling strategy is different
from TGAE, and the rest are consistent with the proposed
version.

Non-probablistic Variant. We also propose a non-
probabilistic variant derived from full TGAE, in which the
ego-graph sampling and temporal graph attention encoding are
consistent with the full version. We modify the decoder of
the full TGAE model to non-probabilistic version, which is
formulated as follows:

Z < MLP, (X 40) ®)

where X4, denotes the input features of the sampled central
temporal nodes. Then, the calculation of the approximate loss
is modified to fit this variant, which is formulated as follows:

1
£tgae = _ni Z Aut 1Og(P(St,u)) (9)
8 utev,
After model training and parameter optimization, the tem-

poral graph generation process of the non-probabilistic variant
is consistent with the full TGAE.

TABLE II
STATISTICS OF THE NETWORK DATA SETS.
Network #Nodes #Edges #Timestamps
DBLP 1,909 8,237 15
EMAIL 986 332,334 805
MSG 1,899 20,296 195
BITCOIN-A 3,783 24,186 1,902
BITCOIN-O 5,881 35,592 1,904
MATH 24,818 506,550 79
UBUNTU 159,316 964,437 88
TABLE 111
GRAPH STATISTICS FOR MEASURING NETWORK PROPERTIES.
Metric Name Computation Description
Mean degree of
Mean Degree E[d(v)] nodes.
. d(v) # Claws of the
Claw Count Ywev (%) eraph,
d(v) # Wedges of the
Wedge Count Yeev (°9) araph.
3 P 3
Triangle Count traceG(A) # Triangles of the
graph.

Size of the largest
connected compo-
nent.

Exponent of
power-law
distribution.

connected com-
ponents.

LCC maz | fl|

PLE L+ n(X ey log(41)) =1

dmin

N-Component |F|

G. Temporal Graph Assembling and Generation

After the training process, we first generate all the ego-
graphs to assemble the score matrix S. Specifically, the algo-
rithm 2 shows the procedure of decoding the edge probabilities
of a k-radius ego-graph for each temporal node u?, where the
Wi € R%n*" and by, € R™ are the output parameters
for decoding process. When the categorical distribution of the
i — l1-order neighbors of u! is generated, we generate i-order
neighbors’ edge probabilities. The process finishes when all
the k-radius ego-graph’s generative distributions are generated.
Assuming that H € R"T*dene contains all hidden variables
of all temporal nodes, we generate score matrix S;—i.7 by
averaging all the edge probabilities generated by the ego-
graphs. Then, we take score matrix as the parameters of the
categorical distribution of each temporal edge with p(¢, u,v) =
#ﬁ:)sm Then we sample the corresponding temporal
edges for each temporal node without replacement, which
is formulated as A;, ~ Qat(HieN(ut)p(t,u,'i)), where
Cat denotes categorical distribution. The generation process
finishes when the generated temporal graph’s edge amount
meets the one observed graph.

V. EXPERIMENTS

In this section, we describe the extensive experiments for
evaluating the effectiveness of our proposed method. We first
describe the experiment setup. Then, present the experimental
results of temporal graph auto-encoder compared with other
baselines, which is the main task of this paper. After that, the

TABLE IV
MEDIAN SCORE fieq(-) COMPARISON WITH SEVEN METRICS. (SMALLER METRIC VALUES INDICATE BETTER PERFORMANCE)

Dataset Metric TGAE TIGGER DYMOND TGGAN TagGen NetGAN E-R B-A VGAE Graphite SBMGNN
Mean Degree 2.41E-3 3.54E-3 2.98E-3 3.25E-3 7.46E-4 4.16E-3 552E-3 1.23E-1 1.79E-3 1.79E-3 1.79E-3
LCC 2.61E-3 2.75E-3 2.71E-3 2.77E-3 2.78E-3 3.35E-1 7.27E-1 9.11E-2 5.11E-1 5.40E-1 4.62E-1
Wedge Count 4.15E-3 3.08E-2 2.31E-2 5.38E-1 7.14E-1 5.05E-1 5.07E-1 3.74E-1 1.81E+0 2.15E+0 2.39E+0
DBLP Claw Count 7.29E-3 2.64E-2 1.35E-2 298E+0 3.02E+0 9.27E-1 8.78E-1 4.52E+0 8.78E+0 1.21E+1 1.42E+1
Triangle Count 4.79E-3 7.85E-2 3.77E-2 5.33E-1 5.44E-1 8.83E-1 9.94E-1 8.24E-1 9.27E+0 9.21E+0 8.66E+0
PLE 1.73E-3 3.34E-2 9.15E-3 1.78E-1 1.79E-1 2.24E-1 1.65E-1 8.45E-2 4.01E-1 4.65E-1 4.25E-1
N-Components 3.05E-3 3.07E-3 3.11E-3 3.39E-3 3.51E-3 2.13E-1 8.36E-1 5.06E-2 5.07E-1 5.49E-1 4.83E-1
Mean Degree 2.69E-2 1.05E-1 OOM OOM OOM 2.13E-1 229E-1 3.24E-2 239E-1 244E-1 3.72E-2
LCC 8.72E-2 9.31E-2 OOM OOM OOM 299E-2 883E-1 1.24E-1 5.56E-1 5.30E-1 3.73E-1
Wedge Count 1.05E-1 2.37E-1 OOM OOM OOM 242E-1 9.27E-1 3.15E-1 6.87E-1 7.50E-1 1.77E+0
MATH Claw Count 2.59E-1 3.75E-1 OOM OOM OOM 496E-1 9.99E-1 4.86E-1 295E+0 3.43E+0 8.13E+0
Triangle Count 9.79E-2 8.78E-1 OOM OOM OOM 2.34E+0 1.00E+0 5.84E-1 1.74E+0 1.66E+0 2.24E+0
PLE 241E-2 9.36E-1 OOM OOM OOM 1.11E+0 2.35E-1 7.81E-2 5.74E-1 5.40E-1 2.49E-1
N-Components 3.15E-2 4.66E-2 OOM OOM OOM 350E-2 1.00E+0 1.35E-1 5.90E-1 5.61E-1 3.96E-1
Mean Degree 9.73E-2 OOM OOM OOM OOM OOM 2.32E+1 5.29E-1 OOM OOM OOM
LCC 1.32E-1 OOM OOM OOM OOM OOM 3.71E+0 2.98E+0 OOM OOM OOM
Wedge Count 3.16E-1 OOM OOM OOM OOM OOM 145E+1 9.76E-1 OOM OOM OOM
UBUNTU Claw Count 5.60E-1 OOM OOM OOM OOM OOM 3.01E-1 9.96E-1 OOM OOM OOM
Triangle Count 1.21E-1 OOM OOM OOM OOM OOM 5.05E-1 1.00E+0 OOM OOM OoOM
PLE 8.52E-2 OOM OOM OOM OOM OOM 7.33E-1 531E-1 OOM OOM OOM
N-Components 2.64E-2 OOM OOM OOM OOM OOM 1.00E+0 8.55E-1 OOM OOM OOM
TABLE V
AVERAGE SCORE fqvg(+) COMPARISON WITH SEVEN METRICS. (SMALLER METRIC VALUES INDICATE BETTER PERFORMANCE)
Dataset Metric TGAE TIGGER DYMOND TGGAN TagGen NetGAN E-R B-A VGAE Graphite SBMGNN
Mean Degree 2.33E-3 3.41E-3 2.78E-3 3.68E-3 1.31E-3 3.83E-3 2.12E-2 1.08E-1 8.93E-3 8.76E-3 8.92E-3
LCC 4.81E-3 4.37E-2 8.76E-3 7.83E-2 8.62E-2 6.57E-1 6.23E-1 1.93E-1 5.09E-1 5.04E-1 4.08E-1
Wedge Count 7.46E-3 6.81E-1 3.06E-2 7.25E-1 9.88E-1 5.63E-1 4.76E-1 3.50E-1 1.92E+0 2.11E+0 2.36E+0
DBLP Claw Count 1.14E-2 2.98E-1 523E-2 3.22E+0 521E+0 1.26E+0 8.55E-1 4.63E+0 1.11E+1 1.24E+1 1.69E+1
Triangle Count 7.38E-3 3.84E-1 2.95E-2 5.24E-1 6.86E-1 7.51E-1 9.92E-1 8.16E-1 8.99E+0 9.61E+0 9.20E+0
PLE 2.71E-3 1.75E-1 3.64E-2 2.53E-1 2.50E-1 2.24E-1 1.83E-1 846E-2 398E-1 4.32E-1 4.00E-1
N-Components 3.07E-3 3.77E-2 9.47E-3 420E-2 4.64E-2 229E-1 6.19E-1 1.02E-1 595E+0 6.27E+0 5.93E+0
Mean Degree 2.64E-2 6.39E-2 OOM OOM OOM 1.97E-1 2.08E-1 3.81E-2 2.05E-1 2.07E-1 3.97E-2
LCC 8.08E-2 7.01E-1 OOM OOM OOM 3.15E-2 1.49E+0 241E-1 S5.41E-1 5.16E-1 3.68E-1
Wedge Count 1.24E-1 1.39E-1 OOM OOM OOM 257E-1 9.30E-1 3.29E-1 8.07E-1 8.59E-1 1.86E+0
MATH Claw Count 2.74E-1 2.98E-1 OOM OOM OOM 497E-1 9.99E-1 5.00E-1 3.45E+0 3.89E+0 8.50E+0
Triangle Count 1.20E-1 4.18E-1 OOM OOM OOM 2.20E+0 1.00E+0 6.35E-1 1.88E+0 1.81E+0 2.25E+0
PLE 2.43E-2 8.31E-2 OOM OOM OOM 9.66E-1 298E-1 1.09E-1 5.39E-1 5.11E-1 2.34E-1
N-Components 9.39E-2 1.12E-1 OOM OOM OOM 1.34E-1 9.45E-1 3.19E-1 4.73E+0 4.52E+0 3.33E+0
Mean Degree 7.41E-2 OOM OOM OOM OOM OOM 2.03E+1 8.89E-1 OOM OOM OOM
LCC 2.10E-1 OOM OOM OOM OOM OOM 6.94E+3 6.02E+3 OOM OOM OoOM
Wedge Count 3.06E-1 OOM OOM OOM OOM OOM 5.07E+4 2.34E+4 OOM OOM OOM
UBUNTU Claw Count 5.14E-1 OOM OOM OOM OoOM OOM 3.10E+5 3.29E+6 OOM OOM OOM
Triangle Count 1.01E-1 OOM OOM OOM OOM OOM 4.73E-1 795E-1 OOM OOM OOM
PLE 1.29E-1 OOM OOM OOM OOM OOM 6.51E-1 5.37E-1 OOM OOM OOM
N-Components 8.40E-2 OOM OOM OOM OOM OOM 997E-1 8.25E-1 OOM OOM OoOM

efficiency and scalability of the proposed method are tested.
Finally, we report the ablation study and parameter sensitivity
experiments.

A. Experiment Settings

We introduce the experimental datasets, comparison meth-
ods, metrics, and parameter settings in this subsection.

Datasets. We evaluate our temporal graph auto-encoder on
seven real temporal networks. Specifically, DBLP [48] is a
citation network that contains bibliographic information of the
publications in IEEE Visualization Conference from 1990 to

2015; MSG [49] and EMAIL [43] are two communication
networks, where a single edge represents a message/email
sent from one person to another at a certain timestamps;
BITCOIN-A and BITCOIN-O [50], [51] are two who-trusts-
whom networks where people trade with bitcoins on Bitcoin
Alpha and OTC platforms; MATH and UBUNTU [43] are
temporal networks of interactions on the stack exchange web
sites Math Overflow and Ask Ubuntu. The statistics of datasets
are summarized in Table II.

Compared methods. We compare TGAE with two state-of-
the-art temporal graph generative models (TIGGER [20] and

TABLE VI
MAXIMUM MEAN DISCREPANCY OF INSTANCE COUNTS OF ALL 2- AND 3-NODE, 3-EDGE §-TEMPORAL MOTIFS BETWEEN RAW AND GENERATED
TEMPORAL NETWORKS (o REFERS TO THE SIGMA VALUE FOR GAUSSIAN KERNEL)

Dataset TGAE TIGGER DYMOND TGGAN TagGen NetGAN E-R B-A VGAE Graphite SBMGNN
DBLP 2.65E-5 9.68E-4 1.25E-4 2.08E-2 231E-2 221E-1 643E-2 1.08E+0 1.34E+0 1.95E+0 1.99E+0
MSG 2.27E-5 2.12E-4 3.77E-5 9.81E-3 1.09E-2 1.85E-2 1.83E-2 1.17E+0 1.98E+0 1.99E+0 1.65E+0

BITCOIN-A 1.12E-6 2.76E-5 OOM OOM OOM OOM 1.90E+0 2.00E+0 3.88E-1 5.39E-1 1.08E-1
BITCOIN-O 5.49E-6 3.06E-5 OOM OOM OOM OOM 1.80E+0 2.00E+0 1.82E+0 1.98E+0 5.22E-1

EMAIL 2.12E-2 7.65E-2 3.27E-2 OOM OOM 9.78E-2 9.74E-1 195E+0 1.95E+0 1.07E+0 1.74E+0

MATH 7.86E-4 2.14E-3 OOM OOM OOM 5.11E-3 6.59E-3 2.74E-3 2.00E+0 1.89E+0 1.94E+0
UBUNTU 1.27E-3 OOM OOM OOM OOM OOM 1.52E+0 2.00E+0 OOM OOM OOM

DYMOND [42]), three GAN-based graph generative models
(TGGAN [19], TagGen [18], and NetGAN [38]), two simple
model-based generative models (E-R [27] and B-A [32]),
and three auto-encoder-based generative models (VGAE [44],
Graphite [52], and SBMGNN [36]). Note that NetGAN, simple
model-based, and autoencoder-based models are not designed
for temporal graph generation. To generate temporal networks,
we separately generate snapshots of the temporal graph at each
timestamp.

Evaluation metrics. We collected several popular evaluating
metrics to measure the difference between the original tem-
poral graph and the generated graph. The graph statistics for
measuring graph properties are summarized in Table III. As all
of these metrics are designed for static graphs, we follow the
practice of TagGen [18], who generalized the aforementioned
metrics to the dynamic setting by calculating mean and median
value of the metrics among all tiNmestamps. Specifically, giAV9n
a metric f,,(-), the real graph G, and the synthetic one G’ ,
we construct a sequence of snapshots S* (E’t), t=1,...,T,
of G (G’) by aggregating edges from the initial timestamp to
the current timestamp ¢. Then, we measure the average/median
difference (in percentage) of the given metric f,,(-) between
two graphs as follows:

Fn(ST) = fim(S7)

Favg(Gy G, fm) =Mean,—1.1(| NG)
~ ' fm(:sf\{)_fm(g/t)

mea(G, G') f) =Median,—1. L

Fmea(fm) =Median;—1.7(| NG)

(10)

Parameter settings. As to baseline methods, we use the best
parameter settings and GPU-accelerated version (if applicable)
given by the original authors. Our proposed TGAE and eval-
uating metrics are implemented through Python-3.7, PyTorch-
1.8, and CUDA-11.1 in our experiments. The experiments are
operated on a machine with Intel(R) Xeon(R) Gold 5220 CPU
@ 2.20GHz, 62 GB RAM, and NVIDIA Tesla V100 with 32
GB memory. We use one CPU core and one GPU for every
algorithm.

B. Temporal Graph Generation

We compare our proposed TGAE with ten baseline models
across seven temporal graph datasets. For the static methods,
we apply them to generate one static graph at each timestamp

and construct a series of graph snapshots by aggregating all
static graphs. The results of seven evaluating metrics in the
form of foug(+) and fi,eq(-) are shown in Tables V and IV.
Evaluation with graph statistics As shown in Tables V and
IV, TGAE outperforms all the baseline methods in at least
six of seven evaluating metrics. As to the DBLP dataset,
the state-of-the-art baseline DYMOND achieves the second-
best performance. Besides, TagGen achieves the best perfor-
mance on mean degree measurement. As to MATH dataset,
TIGGER achieves the second-best performance. According to
the seventh and eighth columns, simple model-based gener-
ative methods (i.e., E-R and B-A) has the worst generative
performance on temporal graph generation. According to
the sixth column and the last three columns, we can see
that static graph generative methods (i.e., NetGAN, VGAE,
Graphite, and SBMGNN) are consistently worse than temporal
graph generative methods. TGAE significantly outperforms
TIGGER, DYMOND, TGGAN, and TagGen with all metrics
except a slightly worse with Mean Degree, which shows that
TGAE is better at capturing most graph properties. TGAE also
outperforms other methods in the other datasets (e.g., MSG
dataset). Due to space limits, we put the representative results
in this manuscript. Please note that most of the learning-
based methods cannot simulate large temporal graphs (e.g.,
the UBUNTU dataset, containing about 14 million temporal
nodes) due to their high requirements for GPU memory
usage. Our proposed TGAE can simulate these large temporal
graphs with affordable time and space consumption. We used
datasets of moderate size in this experiment to ensure that
all baseline methods could run without encountering out-of-
memory (OOM) issues. When we attempted to use larger
datasets for these comparisons, the other methods failed due
to OOM errors, preventing a fair assessment of generation
quality.

C. Temporal Attribute Preservation

We further study the generative performance from detailed
comparison based on preserving temporal attributes, such as
temporal motifs and temporal tendency.

Temporal motifs are recurring subgraph patterns over time
in a temporal graph [43]. By evaluating our model using
temporal motifs, we can assess how well our model captures
and reproduces these fundamental patterns in the generated
graphs. Temporal tendency refers to the propensity of a
graph’s structure to evolve over time [18]. By evaluating our

—e— Origin —%— TGAE —&— TIGGER DYMOND —&— TGGAN

—+— TagGen —&— NetGAN Graphite —&— SBMGNN

log(+)

4 6

(b) We

12 14

8 10
dge Count

log()

ok N o w s ou oo o~

2 8 10

e Coun

12 14

(&) Trir:\ngl

a 6 8 10

(f) N-Component

12

Fig. 5. The comparison results on the seven evaluation metrics across 15 timestamps in DBLP data set. Best viewed in color. The algorithm better fitting the

curve of the original graph (colored in blue) is better.

TABLE VII
RESULTS OF ABLATION STUDY ON TGAE AND ITS VARIANTS. (SMALLER
METRIC VALUES INDICATE BETTER PERFORMANCE)

Dataset Metric TGAE TGAE-g TGAE-t TGAE-n TGAE-p
usG Demee L6IE-2 366E2 165E2 173E2 185E2
Motif 227E-5 8.14E-5 2.95E-5 4.67E-5 4.93E-5

Degree 5.18E-3 127E-2 S589E-3 7.33E-3 7.91E-3
BITCOIN-A “\i0if 1.12E-6 4.33E-6 178E-6 298E-6 2.35E-6
Degree LIIE-2 233E2 127E2 1.65E2 1.73E2
BITCOIN-O "\rliif 5496 2.10E-5 6.81E-6 1.09E-5 1.13E-5

model using temporal tendency, we can assess how well our
model captures and reproduces these dynamic changes in the
generated graphs.

If our model can accurately generate graphs with similar
temporal motif distributions as the original graph, it indicates
that our model has successfully learned the underlying struc-
tural and temporal patterns in the data. And if our model can
accurately generate graphs with similar temporal tendencies as
the original graph, it indicates that our model has successfully
learned the underlying dynamic behaviors in the data.

Temporal Motif Preservation. To evaluate the capacity of
preserving temporal pattern information in the observed data,
we also count the instances of all 2- and 3-node, 3-edge tempo-
ral motifs [43] and calculate the motif distributions maximum
mean discrepancy [37] between the generated graphs and raw
temporal graphs. The results on motif distribution are shown
in Table VI.

According to the first column of Table VI, TGAE achieves
the best performance in preserving the motif distribution in
simulated temporal networks, which demonstrates its ability to
capture both temporal and topological information. According
to the triangle count row of Tables IV and V, we also find
that the result of preserving motif distribution shows a similar
trend to the triangle count. The results indicates that our

proposed TGAE can simulate temporal graphs with similar
motif distribution compared with observed graphs.

Temporal Tendency Visualization. To visualize the temporal
tendency and show the similarity of simulated graphs, we
experiment with the DBLP dataset and measure the statistics
of observed graphs and generated graphs from all algorithms
in each timestamp. By putting results together with the original
graph, we can explore more information on the variation
tendency of different methods on 15 timestamps in the DBLP
dataset. The experimental results are reported in Figure 5,
where the X-axis represents the timestamp, and the Y-axis
represents the value of a metric. According to Figurea 5 (a)
and (f), most of all the methods can have similar number of
connected components compared to observed graphs. Accord-
ing to Figures 5 (b) and (c), TGAE (colored in blue) constantly
performs better than the baseline methods as it better fits
the triangle and claw count variation trends of the original
graph (colored in red). Significantly worse performance of
simple model-based algorithms (e.g., E-R) in motif metrics
(e.g., Triangle Count) proves their extremely weak expressive
power. Our model has surpassed TIGGER, DYMOND, TG-
GAN, and TagGen in almost all measurements. The results
demonstrate that TGAE is the best learning-based temporal
graph generative model in terms of generative quality.

D. Ablation Study.

To validate the effectiveness of each component and our pro-
posed sampling strategy, we report the ablation study results
in Table VII. TGAE-g denotes the variant that the ego-graph
sampling strategy is blocked. TGAE-t denotes the variant that
sampling strategy does not truncate the number of neighbor
nodes. TGAE-n denotes the node sampling strategy is changed
to uniform sampling, that is, blocking the re-weighting strate-
gies. TGAE-p denotes the non-probabilistic variant. According
to the first two columns of Table VII, we can see that if we use
the random walk instead of ego-graphs to model the temporal
graph, the generative performance degrades significantly. The

B TGAE

B TGGAN

BN NetGAN

I TagGen

B TIGGER

@ DYMOND B VGAE

B SBMGNN

@ Graphite

14 1.
(Cut Off)] (Cut Off) (Cut Off)
w w w
> =3 12 =3 12
o o o
= = =
= =10 =10
8 8 8
g a8 g8
€ € €
3 3 3
Z c 6 c 6
o o o
1) i) ()
@ o 4 v 4
£ £ £
= F o, F,
1k¥10%0.01 2k*10%0.01 3k*10%0.01 4k*10%0.01 5k*10%0.01 1k¥10%0.01 1k*20%0.01 1k*30+0.01 1k*40%0.01 1k*50%0.01 1k¥10%0.01 1k*10*0.02 1k*10%0.03 1k*10%0.04 1k*¥10*0.05
Different Node Scale Datasets Different Timstamp Scale Datasets Different Edge Density Scale Datasets
8 8 8
(Cut Off)| (Cut Off)
-7 -7 -7
]] o
=6 =6 =6
o o o
o o o
s s s
1) 1) 1)
g g g
%] 4 %] 4 %] 4
=} p=} p=}
£3 £3 €3
[() ()
= = =
o2 o2 o2
o o o
© 1 © 1 © 1

1K*10%0.01 2k*10%0.01 3k*10*0.01 4k*10%0.01 5k*10%0.01
Different Node Scale Datasets

1K*10%0.01 1k*20%0.01 1k*30*0.01 1k*40%0.01 1k*50%0.01
Different Timstamp Scale Datasets

1K*10%0.01 1k*¥10%0.02 1k*10*0.03 1k*10%0.04 1k*10%0.05
Different Edge Density Scale Datasets

Fig. 6. The comparison results on the time consumption and GPU memory usage in data sets designed for scalability test. The x-axis label implies the
complexity of input temporal graphs in the form of Number of Nodes * Timestamps * Edge Density.

results in the third column show competitive performance with
the complete version, which demonstrates that the truncating
process gives a better efficiency w.o. reducing generative
ability. The other two variants show similar observations that
each component is effective. Due to the paper length limit,
we use two representative evaluating metrics and datasets in
the ablation experiment, the results are similar to observations
from other metrics and datasets. Therefore, the results of
the ablation study demonstrate that all the included sampling
strategies and components are effective.

E. Scalability and efficiency

We also evaluated the scalability and efficiency of our
model and the baseline methods. The first row of Figure 6
reports the time consumption of inferring a new graph, whose
independent variables are the number of nodes, timestamps,
and edge density respectively, while the second row reports
the peak memory usage. Note that the B-A and E-R methods
are not compared in GPU memory usage, because they are not
implemented with the deep learning-based approach.

As the number of sizes (e.g., time stamps, nodes, and edge
density) increases, simple model-based graph generators (B-
A and E-R) have the highest efficiency for generating large
temporal networks, incurring minor extra space costs and
taking little time. All the learning-based methods (including
our proposed TGAE) are more time-consuming than simple
model-based methods.

As for learning-based temporal graph generative models,
TGAE achieved much better results than DYMOND, TGGAN,
and TagGen in terms of time consumption and memory usage.
As can be seen in Table V, IV, and Figure 6, learning-based
methods, including TGGAN, TagGen, and NetGAN, cannot

run through most of the datasets due to its high time and
memory consumption. As the number of nodes and timestamps
increase, TGAE has a linear increase in time consumption and
memory usage. Compared with other learning-based temporal
graph generative methods, TGAE is the best model choice
for efficient and effective temporal graph generation. Com-
pared with all the learning-based baseline methods, TGAE
can achieve a good trade-off between simulating quality and
efficiency.

VI. CONCLUSION

Temporal graph simulation can help to mimic real-life
graphs in many applications, including biology, information
technology, and social science. However, most of the graph
simulation works focus on static graph simulation, ignoring
the temporal evolving property of real-life graphs. In this
paper, we proposed temporal graph autoencoders (TGAE) to
simulate real-life graphs and reproduce the temporal and struc-
tural properties from observed graph data. Besides, existing
learning-based approaches are limited by their high memory
usage and time consumption, especially for sampling random
walk-based approaches. Therefore, we propose initial node
sampling and ego-graph sampling strategies to achieve effi-
cient graph generative model training. Extensive experiment
results on simulating quality and model efficiency show that
our proposed TGAE achieves the best generative performance
compared with other learning-based baselines. TGAE also
achieves a good trade-off between quality and efficiency. In
the future, we aim to scale the learning-based approaches to
simulate large graphs with billion nodes.

[1]
[2]

[3]

[4

[l

[5

[6

[8]
[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

A. Bonifati, I. Holubov4, A. Prat-Pérez, and S. Sakr, “Graph generators:
State of the art and open challenges,” ACM Comput. Surv., 2020.

P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowl. Based Syst., vol. 151, pp. 78-94,
2018. [Online]. Available: https://doi.org/10.1016/j.knosys.2018.03.022
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, pp. 4-24, 2019.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
Al Open, vol. 1, pp. 57-81, 2020.

Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, vol. 34, pp.
249-270, 2022.

S. Xiang, D. Wen, D. Cheng, Y. Zhang, L. Qin, Z. Qian, and X. Lin,
“General graph generators: experiments, analyses, and improvements,”
The VLDB Journal, pp. 1-29, 2021.

J. Stoyanovich, B. Howe, and H. V. Jagadish, “Responsible data man-
agement,” Proc. VLDB Endow., pp. 3474-3488, 2020.

P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social Networks, pp. 109-137, 1983.

J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
SIGKDD. ACM, 2005, pp. 177-187.

Y. Ma, Y. Yuan, M. Liu, G. Wang, and Y. Wang, “Graph simulation
on large scale temporal graphs,” Geolnformatica, vol. 24, pp. 199-220,
2019.

Y. Xie, Z. Xu, Z. Wang, and S. Ji, “Self-supervised learning of graph
neural networks: A unified review,” IEEE transactions on pattern
analysis and machine intelligence, vol. PP, 2022.

D. Cheng, S. Xiang, C. Shang, Y. Zhang, F. Yang, and L. Zhang, “Spatio-
temporal attention-based neural network for credit card fraud detection,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 01, 2020, pp. 362-369.

R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and
J. Zhou, “Aligraph: A comprehensive graph neural network platform,”
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019.

K. K. Jahromi, M. Zignani, S. Gaito, and G. P. Rossi, “Simulating human
mobility patterns in urban areas,” Simul. Model. Pract. Theory, vol. 62,
pp. 137-156, 2016.

W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational autoen-
coder for molecular graph generation,” in International Conference on
Machine Learning, 2018, pp. 2328-2337.

M. J. McDermott, S. S. Dwaraknath, and K. A. Persson, “A graph-
based network for predicting chemical reaction pathways in solid-state
materials synthesis,” Nature Communications, vol. 12, 2021.

M. C. Gonzilez, C. A. Hidalgo, and A. L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, pp. 779-782,
2008.

D. Zhou, L. Zheng, J. Han, and J. He, “A data-driven graph generative
model for temporal interaction networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 401-411.

L. Zhang, L. Zhao, S. Qin, D. Pfoser, and C. Ling, “Tg-
gan: Continuous-time temporal graph deep generative models with
time-validity constraints,” in Proceedings of the Web Conference
2021, ser. WWW ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2104-2116. [Online]. Available:
https://doi.org/10.1145/3442381.3449818

S. Gupta, S. Manchanda, S. Bedathur, and S. Ranu, “Tigger:
Scalable generative modelling for temporal interaction graphs,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 6, pp. 6819-6828, Jun. 2022. [Online]. Available:
https://ojs.aaai.org/index.php/A AAl/article/view/20638

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” arXiv
preprint arXiv:1709.04875, 2017.

T. Li, J. Zhang, S. Y. Philip, Y. Zhang, and Y. Yan, “Deep dynamic
network embedding for link prediction,” IEEE Access, vol. 6, pp.
29219-29230, 2018.

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Z. Liu, D. Zhou, and J. He, “Towards explainable representation of
time-evolving graphs via spatial-temporal graph attention networks,” in
Proceedings of the 28th ACM international conference on information
and knowledge management, 2019, pp. 2137-2140.

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, and C. E. Leisersen, “Evolvegen: Evolving graph convolutional
networks for dynamic graphs,” in AAAZ, 2020.

X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui,
Y. Yang, B. Sun et al, “Apan: Asynchronous propagation attention
network for real-time temporal graph embedding,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
2628-2638.

M. Yang, M. Zhou, M. Kalander, Z. Huang, and I. King, “Discrete-
time temporal network embedding via implicit hierarchical learning in
hyperbolic space,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 2021, pp. 1975-1985.

P. Erd6s, A. Rényi et al., “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17-60, 1960.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 442-446.

D. Watts and S. Strogatz, “Collective dynamics of ’small-world’ net-
works (see comments),” Nature, pp. P.440-442, 1998.

C. Grabow, S. Grosskinsky, J. Kurths, and M. Timme, “Collective
relaxation dynamics of small-world networks,” Physical Review E,
vol. 91, no. 5, p. 052815, 2015.

L. Akoglu and C. Faloutsos, “Rtg: A recursive realistic graph generator
using random typing,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. — Springer, 2009,
pp. 13-28.

R. Albert and A.-L. Barabdsi, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S.
Tomkins, “The web as a graph: Measurements, models, and methods,”
in International Computing and Combinatorics Conference. Springer,
1999, pp. 1-17.

B. Karrer and M. E. J. Newman, “Stochastic blockmodels and commu-
nity structure in networks,” Physical Review E, p. 016107, 2011.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed mem-
bership stochastic blockmodels,” Journal of machine learning research,
vol. 9, no. Sep, pp. 1981-2014, 2008.

N. Mehta, L. C. Duke, and P. Rai, “Stochastic blockmodels meet graph
neural networks,” in International Conference on Machine Learning.
PMLR, 2019, pp. 4466-4474.

J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “Graphrnn:
Generating realistic graphs with deep auto-regressive models,” in Inter-
national Conference on Machine Learning, 2018, pp. 5694-5703.

A. Bojchevski, O. Shchur, D. Ziigner, and S. Giinnemann, “Netgan:
Generating graphs via random walks,” in International Conference on
Machine Learning. PMLR, 2018, pp. 610-619.

P. Liu and A. E. Sariyiice, “Using motif transitions for temporal graph
generation,” in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023, pp. 1501-1511.

M. Massri, Z. Miklos, P. Raipin, P. Meye, A. B. Pilet, and T. Hassan,
“Rtgen++: A relative temporal graph generator,” Future Generation
Computer Systems, vol. 146, pp. 139-155, 2023.

S. Zheng, C. Wang, C. Wu, Y. Lou, H. Feng, and X. Yang, “Temporal
graph generation featuring time-bound communities,” in 2024 IEEE 40th
International Conference on Data Engineering (ICDE). 1EEE, 2024,
pp. 2365-2378.

G. Zeno, T. La Fond, and J. Neville, “Dymond: Dynamic motif-
nodes network generative model,” in Proceedings of the Web
Conference 2021, ser. WWW °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 718-729. [Online]. Available:
https://doi.org/10.1145/3442381.3450102

A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proceedings of the tenth ACM international conference
on web search and data mining, 2017, pp. 601-610.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

L. Rendsburg, H. Heidrich, and U. Von Luxburg, “Netgan without
gan: From random walks to low-rank approximations,” in International
Conference on Machine Learning. PMLR, 2020, pp. 8073-8082.

[46]

(471

[48]

[49]

[50]

[51]

[52]

G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Continuous-time dynamic network embeddings,” in Compan-
ion Proceedings of the The Web Conference 2018, 2018, pp. 969-976.
G. Salha-Galvan, R. Hennequin, J.-B. Remy, M. Moussallam, and
M. Vazirgiannis, “Fastgae: Scalable graph autoencoders with stochastic
subgraph decoding,” Neural networks : the official journal of the
International Neural Network Society, vol. 142, pp. 1-19, 2021.

D. Zhou, K. Wang, N. Cao, and J. He, “Rare category detection on
time-evolving graphs,” in 2015 IEEE International Conference on Data
Mining. 1EEE, 2015, pp. 1135-1140.

P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online
community,” Journal of the American Society for Information Science
and Technology, vol. 60, no. 5, pp. 911-932, 2009.

S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge
weight prediction in weighted signed networks,” in 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 2016, pp.
221-230.

S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Sub-
rahmanian, “Rev2: Fraudulent user prediction in rating platforms,” in
Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, 2018, pp. 333-341.

A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative
modeling of graphs,” in International conference on machine learning.
PMLR, 2019, pp. 2434-2444.

