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Enhancing Attribute-driven Fraud Detection with
Risk-aware Graph Representation
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Abstract—Credit card fraud is a severe issue that causes
significant losses for both cardholders and issuing banks. Existing
methods utilize machine learning-based classifiers to identify
fraudulent transactions from labeled transaction records. How-
ever, labeled data are often scarce compared to the billions of
real transactions due to the high cost of annotation, which means
that previous methods do not fully utilize the rich features of
unlabeled data. What’s more, contemporary methods succumb
to a fallacy of unawareness of the local risk structure and
the inability to capture certain risk patterns. Therefore, we
propose the Risk-aware Gated Temporal Attention Network
(RGTAN) for fraud detection in this work. Specifically, we first
build a temporal transaction graph based on the transaction
records, which consists of temporal transactions (nodes) and their
interactions (edges). Then we leverage a Gated Temporal Graph
Attention (GTGA) Mechanism to propagate messages among the
nodes and learn adaptive representations of transactions. We
also model the fraud patterns through risk propagation, taking
advantage of the relations among transactions. More importantly,
we devise a neighbor risk-aware representation learning layer to
enhance our method’s perception of multi-hop risk structures.
We conduct extensive experiments on a real-world credit card
transaction dataset and two public fraud detection datasets. The
results show that our proposed method, RGTAN, outperforms
other state-of-the-art methods on three fraud detection datasets.
The risk-aware semi-supervised experiments also demonstrate
the excellent performance of our model with only a small fraction
of manually labeled data. Moreover, RGTAN has been deployed
in a world-leading credit card issuer for credit card fraud
detection, and the case study results show the effectiveness of
our method in uncovering real-world fraud patterns.

Index Terms—Fraud Detection, Semi-supervised Learning,
Graph Neural Network.

I. INTRODUCTION

HE great losses caused by financial fraud have attracted
continuous attention from academia, industry, and regu-
latory agencies. Ensuring the security of financial transactions
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is crucial for protecting the privacy and assets of customers,
preventing fraud and identity theft, maintaining trust and confi-
dence in the financial system, and complying with the relevant
laws and regulations. However, fraudulent behaviors against
online payments, such as illegal card swiping, have caused
property losses to online payment users [1]. An effective
financial fraud detection method can reduce the operating costs
of service providers and protect the property of bank users.

Research in the area of financial fraud detection often
focuses on credit card fraud, which involves unauthorized
transactions typically made through credit or debit cards [2]. A
common framework used in commercial systems for detecting
such fraud is depicted in Figure 1 [3]. Initially, fraud can
be identified through straightforward methods like rule-based
systems, which check against blacklists and expenditure limits.
However, these systems can be compromised as fraudsters
learn to exploit their vulnerabilities. To address these short-
comings, predictive models have been developed to identify
fraudulent patterns and generate a risk score for each trans-
action. This allows domain experts to prioritize their attention
on transactions that pose the highest risk.

A considerable amount of research has focused on develop-
ing predictive models for identifying fraudulent transactions in
the existing literature (e.g., [4]-[6]). These models generally
fall into two main groups: (1) Rule-based methods, where
domain experts craft complex rules to pinpoint suspicious
activities, such as the association rule method suggested in
[7] for detecting frequent fraudulent patterns; and (2) Ma-
chine learning-based methods, which rely on analyzing vast
amounts of historical data to create static predictive models.
For instance, the study in [8] utilized neural networks to
extract features and develop supervised classifiers for fraud
detection, while [5] explored automated feature engineer-
ing using convolutional neural networks (CNN). Addition-
ally, novel approaches utilizing graph machine learning have
emerged [9]-[11], where transaction data is represented as
graphs, employing sophisticated graph embedding techniques
to enhance fraud detection capabilities.

Cutting-edge fraud detection methods [9], [10], [12]-[14]
effectively identify transaction patterns, either temporal or
graph-based, and considerably enhance credit card fraud de-
tection performance. Nonetheless, these techniques typically
encounter one or more of the following significant drawbacks:
(1) they overlook unlabeled data, which often contains valu-
able information about fraud patterns, for example, the 4-
vertex-motif [15]; (2) they neglect the relevance of categorical
attributes like card and merchant types, which are prevalent
in actual operational settings; (3) they demand extensive time
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for feature engineering, particularly concerning temporal and
categorical attributes.

In our preliminary work [16], we proposed a gated temporal
attention network to address the above challenges and gained
competitive results. To understand the relationships in credit
card transactions involving temporal data, we use a temporal
transaction graph to model time-related patterns. Labeling
transactions is labor-intensive and expensive, with fewer than
10% of billions of real-life transactions being labeled, yet
many contain undetected fraud patterns. It’s essential to utilize
features from unlabeled data effectively. To address underuti-
lization, we introduce risk embedding to integrate feature and
label information, maximizing the use of risk data. Moreover,
given the prevalence and relevance of categorical attributes
in practical settings, we have developed an attribute learning
layer to preprocess transaction attributes.

However, an increasing number of criminals are organized
like enterprises, which can be far-reaching and move quickly
from place to place, to conduct conspiracy frauds to covet
money from innocent consumers [17]. To fight against hu-
man brain-armed criminal behavior, existing graph neural-
based methods still face significant challenges in capturing
these complicated fraud patterns. Therefore, in this paper,
we substantially improved our previous work by proposing a
risk-aware graph network to represent the high-order adjacent
fraud patterns via a cross-attentional mechanism on multi-
hop neighbors. In practice, we aggregate degree and risk
information from multi-hop neighbor transactions, which is
then processed by a convolutional embedding layer and a
structural attention layer, which can extract the local risk
information and make our model aware of higher-order risk
structures. Our work makes significant contributions in several
key areas:

« We construct a temporal transaction graph to represent
credit card activities and approach credit card fraud de-
tection as a semi-supervised node classification challenge.

« We introduce an innovative attribute-driven temporal
graph neural network tailored for detecting credit card
fraud. This includes a gated temporal attention net-
work designed to efficiently process both temporal and
attribute-based data.

e Our network incorporates a risk-aware representation
learning layer that utilizes degree and risk information
from multi-hop neighborhood connections to enhance the
local risk structure representations.

o Comprehensive testing on three different datasets con-
firms our RGTAN’s enhanced performance in fraud detec-
tion. The semi-supervised testing highlights our method’s
ability to utilize the vast amount of unlabeled data along
with a small portion of labeled data to identify more
fraudulent transactions compared to existing baselines.
Furthermore, case studies in real-world scenarios validate
the effectiveness of our method in recognizing actual
fraud patterns.

A preliminary version of this manuscript appeared in [16].
To further capture the high-order adjacent fraud patterns,
this journal version proposed a risk-aware gated temporal
attention network in Section 4 (new section) to enhance the
capacity of the existing graph neural model. In the preliminary
submission [16], historical fraud labels and attribute features
are concatenated directly as encodings for downstream tasks.
While in this extension, we proposed a risk-aware graph
network to represent the high-order adjacent fraud patterns via
a cross-attentional mechanism on multi-hop neighbors, which
could overcome the 1-WL test capacity limitations of the
existing graph neural model [18]. We thoroughly evaluated the
new proposed substantial improvement approach, compared
with the preliminary work and the state-of-the-art baselines in
Section 5 (updated section). The experimental results prove
the superior performance of our new contribution in detecting
complicated inter-connected fraud patterns. In addition, we
added empirical studies on real-world application scenarios af-
ter system deployment and reported our knowledge discovery
in Section 6 (new section).

The rest of the paper is organized as follows. In Section II,
we conduct a survey on the previous works regarding credit
card fraud detection, graph-based methods, and graph structure
learning. In Section III, we present the Graph Temporal
Graph Attention (GTGA) mechanism designed for extracting
temporal fraud patterns as well as the attribute embedding
layer. In Section IV, we detailedly introduce risk embedding
and neighbor risk-aware embedding, as well as how they equip
the network with awareness of risk structures. Comprehensive
experimental results for our proposed method are presented
in Section V. Section VI studies two typical risk patterns and
validates the risk-aware capacity of our model. Section VII
concludes the paper.

II. RELATED WORKS
A. Credit Card Fraud Detection

Numerous machine learning techniques have been explored
in literature to address credit card fraud detection [19]—[21].
Studies have implemented Bayesian Belief Networks (BBN)
and Artificial Neural Networks (ANN) on datasets like those
from Europay International [22]. Comparisons between neural
network models and decision trees have been made in [23],
while [24] utilized both decision trees and support vector
machines (SVM) on datasets from a national bank. The work
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in [5] revealed that convolution models, which extract spatial
patterns, can outperform traditional neural networks in terms
of accuracy. Additionally, the use of graph-based methods
for fraud detection is on the rise [25]-[27]. For instance,
CARE-GNN was developed to improve fraud detection on
relational graphs [12], and PC-GNN was aimed at addressing
imbalances in supervised learning on graphs [10]. AO-GNN
applied reinforcement learning to optimize edge pruning for
better handling of label imbalances [28]. The H2-FDetector
utilized a mix of homophilic and heterophilic connections and
incorporated a prototype-based approach to enhance fraudster
identification [29]. Works like [3], [14] focused on joint feature
learning from spatial and temporal data but were limited
to single transaction/cardholder scenarios, which overlooks
unlabeled transaction data. Our approach diverges significantly
from these methods by adopting a semi-supervised model
that leverages an attribute-driven graph neural network to
concurrently learn from both labeled and unlabeled data in
detecting fraud patterns.

B. Graph-based Semi-supervised Learning

Recent studies have highlighted the advantages of utilizing
unlabeled node attributes in graph neural networks across
various predictive tasks, including text classification [30], time
series forecasting [31], molecular feature prediction [32], and
language processing [33]. For example, graph convolutional
networks (GCN) have been used for property prediction in
sparsely labeled citation networks [34]. GraphSAGE [35] was
developed to create embeddings for new data, while graph
attention networks and random walks were applied to social
networks to integrate unlabeled and labeled data for message
passing [9]. Moreover, SPC-GNN [36] implemented a self-
paced labeling enhancement strategy to boost performance in
semi-supervised node classification tasks. Nonetheless, these
approaches often encounter challenges such as scaling to
graphs with millions of nodes, propagating and learning cat-
egorical attribute embeddings, particularly risk-related ones,
and leveraging graph structural data effectively. In contrast,
our method tackles fraud detection by using a message-passing
model that synergistically handles categorical attributes and
structural risk data. We introduce an attribute-driven, semi-
supervised graph neural network approach to enhance the
detection of fraud patterns and significantly improve the pre-
cision of credit card fraud detection efforts.

C. Graph Structure Learning

Graph structure learning (GSL) is a research area that aims
to learn more effective graph structures and representations for
downstream tasks [37] and involves inferring optimal graph
structures and representations from data that are generated
by or correlated with the graph [38]. Most approaches in
this realm are inspired by [39], which employs persistent
homology to calculate topological features(e.g., cycle, path,
connected components). [40] proposes a new kernel and an
optimization framework to learn the topological summaries of
data and achieve competitive results in graph classification.
[41] augment the subtree features of the Weisfeiler—Lehman

graph kernel with topological information so as to improve the
performance of graph-level classification. [42] enables deep
neural networks to capture topological structure via inputting
features obtained from persistent homology. PEGN in [43]
designs a persistence layer to enrich graph representations, and
[44] further makes graph neural networks topological-aware
via a topological graph layer (TOGL). A subgraph isomor-
phism counting layer is raised in GSN to capture higher-order
structural information [18]. It is worth paying attention to such
structural information in the realm of fraud detection. [15]
utilized a HGAR attention mechanism to select risk pattern
candidates(i.e. 4-vertex-motif structures). However, the afore-
mentioned approaches are not readily applicable to the domain
of fraud detection. Purely structure-aware methods fail to
leverage label information, thus hindering their ability to detect
fraud patterns that are intimately associated with fraud labels.
In this paper, we innovatively introduce the idea of graph
structural learning into fraud detection. Specifically, we devise
arisk-aware learning layer, which adopts the idea of ’structure-
ware’, to model high-order adjacent fraud patterns which are
proven to be conducive to improving the expressiveness and
performance of graph neural networks.

III. GATED TEMPORAL GRAPH ATTENTION

In this section, we first introduce the framework of our
proposed Gated Temporal Graph Attention (GTGA) mecha-
nism. After that, we present the process of feature engineering
and the gated temporal attention networks. The optimization
strategy and learning objective are defined at the end.

A. Model Architecture

The architecture of our proposed model is depicted in Fig-
ure 2. This section explains components such as (b)Attribute
Embedding and (d) Gated Temporal Graph Attention. Initially,
the raw attributes from transaction records undergo a process
of attribute embedding using a look-up and feature learning
layer, which includes a multi-layer perceptron (MLP) for
feature aggregation. Attributes related to the card encom-
pass aspects like card type, cardholder category, credit limit,
and available balance. Transaction-related attributes cover
elements such as channel ID, currency ID, and transaction
volume, whereas merchant-related attributes include merchant
category, terminal type, location, industry sector, and fee
percentage.

Subsequently, a gated temporal attention network is em-
ployed to assimilate and prioritize the significance of past
transaction embeddings. This is followed by the application of
a two-layer MLP that calculates the likelihood of fraud based
on these learned embeddings. The entire model is designed for
end-to-end optimization using the standard stochastic gradient
descent algorithm.

B. Attribute Embedding and Feature Learning

This subsection details our approach to preprocessing trans-
action attributes. Each transaction record r = (r1,72, -+ ,7'N)
includes attributes for cards f!, transactions f;, and merchants
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Fig. 2. The illustration of the proposed graph neural network model. Raw transaction records are processed by attributed embedding and attribute aggregation
to combine each semantic representation. Degree and risk information is collected from the multi-hop neighborhood and concatenated into node features
after convolutional embedding and self-attention operations. Afterward, the learned representations are fed into a risk-aware gated temporal attention network
(RGTAN) for representation learning. The transaction representation is then fed into a multi-layer perceptron for fraud detection. Attentional weights are
jointly optimized in an end-to-end mechanism with graph neural networks and fraud detection networks.

fi represented as r; = fi, fi, fi . Unlike previous methods
referenced in [3], [14], we retain all cards and merchants, re-
gardless of their number of authorized transactions, to preserve
all potential fraud indicators in our dataset. We also tested data
with different label ratios, which can be found in Section V-C.
We then convert these attributes into a numerical tensor
Xnum € RNV*? with N being the transaction count and d
is the feature dimensions. Additionally, we separately process
card, transaction, and merchant categories into Xcat € RN xd
using attribute embedding layers, calculated as below:

Cattr :OnehOt(fattr) ® Eattra

Zeat,i =MLP;( Z e;), 1 € {card, trans, mchnt}, (1
Vj€Etable;

where each column j in table ¢ is represented as j € table;.
Here, eqr € R1*4 is the embedding for an attribute attr,
onehot(-) is used for one-hot encoding, fu:r is a single
attribute from a transaction, and Egy, € R™*? is the
embedding matrix for the attribute attr, where m represents
the maximum possible variations of attr.

Following the creation of the attribute embeddings for
the card, transaction, and merchant categories, we use add-
pooling to combine these embeddings into a single categorical
embedding per transaction with z(%) = 3. xgﬁl, where
i € card,trans,mchnt and z{") € R'? represents the
category embedding vector for the wu-th transaction record.
Our approach effectively reduces the space complexity from
O(Nac) to O(Na + acd), with N indicating the transaction
count, ¢ the category count, and a the average number of
unique values per category. This reduction is particularly
beneficial in large-scale applications with numerous categor-

ical attributes. Moreover, the heterogeneous nature of these
attributes allows our feature learning layer to model and map
them into a unified spatial dimension, enhancing our attribute-
driven graph learning framework.

C. Gated Temporal Graph Attention Mechanism

To discern temporal fraud patterns, we construct a temporal
transaction graph and utilize it to aggregate messages that
update each transaction’s embedding. Specifically, we generate
directed temporal edges, positioning prior transactions as
sources and subsequent ones as targets, as depicted in Fig-
ure 2(c). Message aggregation is then conducted via Temporal
Graph Attention, and the quantity of temporal edges for each
node is a tunable hyper-parameter, details of which will be
explored in the experimental section.

Temporal Graph Attention. Starting with attribute embed-
ding and feature engineering, we engage a series of transaction
embeddings X = x,, x4, ...7¢, to deduce each transaction’s
temporal embedding. Initially, we integrate categorical and
numerical attributes for the RGTAN input with x;, = a) +
o:gjt). Setting Hy = X as the initial embedding matrix at the
first GTGA layer, we apply multi-head attention to evaluate the
significance of each neighboring node and update embeddings

accordingly, as outlined in the following equation:

H =Concat(Headl, ..., Headh, )Wo, )

where hatt represents the number of attention heads, Wo &€
R¥*? are learnable parameters, and H embodies the updated
embeddings with H hto, ht,, ..., he,. Each head in the
attention mechanism operates as follows:
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Head = Z et Z Qgy 2 Tt),

z,€EX Tt EN(Il)
B exp(LeakyReLU(a” [x;]|z;))
Zl_j N () exp(LeakyReLU(a” [z4]|z,]))’

where N (z;) indicates the temporal neighbors of the trans-
action 7, ag, ,, quantifies the importance of each temporal
edge in the attention process, and a € R2? is the weight
vector for each head. We control the number of neighbors
N (z¢)| using a neighbor sampling and truncation strategy
to manage space consumption effectively, especially during
periods of high-frequency transactions. It’s also ensured that
only past transactions from the same cardholder are considered
to maintain the integrity of the temporal pattern modeling.

3)

awt,ﬂii

Attribute-driven Gated Residual. To enhance our method’s
interpretability and effectiveness further, after aggregating
embeddings, we employ them along with raw attributes to
ascertain the significance of the combined embeddings post-
temporal graph attention. This process is described by:

gateti :U([I‘C&t, t1| ‘mnum,ti | ‘htl]ﬁm)a

- ht; + (1 — gatet;) - xt;,

where gatet; represents the gating variable for transaction ¢,
o is the sigmoid function, Bt; € R34X! denotes the gating
vector, and 2, is the output vector of each GTGA layer, used
as input for subsequent layers. If additional GTGA layers are
stacked, the output from the k-th gating mechanism serves as
input to the k+ 1-th GTGA layer. In this stacking framework,
the bottom-up k-th GTGA layer weighs the importance of
the k-th order neighbor transactions. In addition, the bottom-
up k-th attribute-driven gated residual mechanism weighs the
importance of each transaction’s k-th order neighbor transac-
tion embedding and its own embedding. Algorithm 1 shows
the detailed computation process of message passing in one
GTGA layer.

“4)

zt, =gatet;

D. Fraud Risk Prediction

Upon acquiring the collective embeddings of transaction
data, we apply a dual-layer MLP to determine the potential
fraud risk. The prediction model is described by the following
equation:

¥ = o(PReLUHW), + bg)W; + by), ®)

where § € RV*! represents the predicted risk outcomes for
all transactions, with W and b as the adjustable parameters of
the MLP. The loss function £ is then computed using binary
cross-entropy, detailed as follows:

2

N
fz yi -log p(§:|X, A)+
=0

(1 —yi)-log(1 — p(9:/X, A))],
where y indicates the actual labels of the transactions. This
network model is optimized using conventional stochastic
gradient descent (SGD)-based methods.

(6)

IV. RISK-AWARE GATED TEMPORAL ATTENTION
NETWORK

In this section, we present the details of risk propagation and
neighbor risk-aware embedding. Practically, manually anno-
tated labels are adopted as categorical features and integrated
into the original features after embedding transformations.
Risk information from multi-hop neighborhoods is encoded
into features by adding the degree and risk count from multi-
hop neighbors. Both are jointly passed and updated through
GTGA, which we call risk-aware message passing. To avoid
possible label leakage, we leverage a masked fraud detection
strategy.

Algorithm 1: Steps of computation in a GTGA layer

Input : G(V, E): the given transaction graph

Hj,: the embedding matrix from the ™ layer
Zeqt: categorical features

Tnum-: Numerical features

Hj,1: updated embedding feature matrix as
input of (k + 1)™ layer

1 fori < 1to N do

2 for h < 1 to h,y do

3 Head), <~ o(3_,, N () gy oz, Tt)s

exp(o(a” [z |z4])
SEN (z; )eXP(U(aT[@H%]))

Output:

4
Ot<—z

h; + Concat(Head}, ..., Headhm)Wo;
v; < Concat(Zcat,ir Tnum,ir M)

gate; < o(vif3;);

z; < gate; - h; + (1 — gate;) - Hy ;;

®w N & »n

9 Hk+1 — [ZlHHZN]

A. Risk Propagation Representation

The manual-annotated labels are expensive in real-world
fraud detection practice. With labeled risk information, we
can effectively model more fraud patterns, such as risk prop-
agation. Drawing inspiration from the integration of label
propagation with feature propagation [45], we introduce a
concept we term risk embedding. Specifically, we utilize
the manually annotated label of each transaction as a risk
feature, categorizing unlabeled data as ’'unlabeled’ and the
remainder as ’fraud’ or ’legitimate’. This label is incorporated
as a categorical attribute within our transaction data. Previous
solutions have not employed this attribute due to the potential
risk of label leakage, which we address with specific strategies
discussed later. We then embed these partially observed risk
attributes into the same dimensional space as other node
features, resulting in risk embedding vectors for labeled nodes
and zero vectors for unlabeled ones. These are then combined
with other node features for input with x;, = x%% + :Cﬁ';lf) +
7")W,., where W,. represents the adjustable parameters for
risk embedding. Research by [45] has demonstrated that by
aligning partially-labeled Y with node features X in the same
space and combining them, a single graph neural network
can effectively facilitate both attribute and label propagation.
Thus, our fraud detection framework effectively models both
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temporal fraud patterns and risk propagation by incorporating
the transaction label as a categorical attribute of transactions.

B. Neighbor Risk-aware Attentional Embedding

Fraud transactions often fabricate noisy information to
make them difficult to be recognized and therefore result in
redundant link information around fraudulent nodes, which
can to some extent weaken the power of neighborhood ag-
gregation [10]. For example, fraudulent transactions might be
deliberately connected to numerous legitimate transactions so
that spammers could hide among legitimate users. Such risk
patterns are relatively difficult to be captured by vanilla graph-
based methods. In this paper, we leverage the degree informa-
tion of multi-hop neighbor nodes and count of risky neighbors
as node features, which can inherently reflect the local risk
structure, to alleviate the problems described above. Risk-
aware representations are further learned by a convolutional
embedding layer and structural attention layer.
Convolutional Embedding. For given transaction records
r = (ry,72, -+ ,7N), each record r; have neighbor degree
feature f7, gree,; and risk neighbor count feature flisp. > Where
k denotes k-hop neighborhood. Besides, to avoid future label
leakage, we merely gather information from past transaction
records belonging to the same cardholder of r;. The above two
features can be formulated as follows:

féegree,k‘ = Z Degree(“)?

ueN}
Y. v

weN,yu=1

)

% —
risk,k —

where N} denotes the filtered k-hop neighbor nodes of 7,
Degree(u) counts the in degree of 7, and y € R denotes
labels of all transactions. After obtaining the neighbor risk
information for each transaction record, we stack these numeri-
cal features and construct neighborhood risk-aware representa-
tion through a convolutional embedding layer. [46] has proven
such embedding numerical features can be conducive to many
backbone structures. We construct the neighbor risk features
into tensor format X,,.; € RV*" where r denotes the number
of neighbor risk features, which later will be transformed into
the risk-aware embedding matrix X,.,; € RY*"*? ag Figure
3 shows.

Specifically, X,,.; € RV*" is expanded via a linear layer
and reshaped into ¢ channels, which we denote as X ,n, €

RY*exL with L referring to the length of each channel.

Thereafter, multiple 1D convolutional layers are leveraged to
extract the risk information representations. We denote each
channel of record i at layer [ as X%J! (1 <= j <= r), and
each channel vector is convolved by a filter vector w of length

H with zero-padding after the batch norm operation.

H-1
X m] = o WK bn —h+ Pl 4D,
o ®)

m € [0, L — 1]

where b is the bias term and P is the padding size that satisfies
P = % At the final convolutional layer, the number of
channels and the vector length are adjusted to r and d, via
an output convolutional layer and an adaptive pooling layer
respectively, with each channel corresponding to a previous
neighbor risk feature. The skip connection strategy is leveraged
to alleviate the problem of gradient vanishing and exploit
spatial correlations and translations between risk features.

XL € RN*xd gre adopted as the risk-aware embedding.

Algorithm 2: Neighbor risk-aware embedding

Input : G(V, E): the given transaction graph
Output: X, x: neighbor risk-aware embeddings
1 fori+ 1to N do
for k <+ 1 to K do

2
3 fae = 2uen; Degree(u),
4 ik = Zue/\/,;' Yo if y, = 1; then

nei < aes o fae o Frions oo Fri k]
hy < Reshape(f, ., Wo.(c,L))
for [ +— 1 to L do
for c < 1 to C do
for m < 1 to L do

10 L jelm] < o 55 (whels]hi_y [m —

Pl+b)+hj_,.
fi, fo, o fo} —{hr 1, hr o, by}

e o N S W

s+

11 {

12 for h < 1 to num do

13 Headj, < U(Zte[m oy, £, %)
exp(o(a” [fe]|fi])) .

" RN s e AITADE

YW1,

15 | H' « Concat(Head!, ..., Head’,
16 X,op — {HY, H?, ... HV}

Structural Attention. Afterwards, we introduce a structure-
aware self-attention module to separately calculate the im-
portance of each neighbor risk-aware feature and update
the embeddings, which can further exploit the neighborhood
risk information and help learn fraud patterns. For a certain
transaction record r;, we denote its embedding matrix as
Xt € R4 = {fi, fa, ..., f+}. The calculation process can
be formulated as follows:

H'’ = Concat(Heady, ..., Head, .1, )Wo, 9)
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where num denotes the number of attention heads, W, €
R%*? denotes learnable parameters, H denotes the updated
risk-aware embeddings and each attention head is formulated
as follows:

Head = Z of

i€[l,r]  me(l,r]
exp(LeakyReLU(a” [, ||fi]))
2 neqt,r) exp(LeakyReLU(a” [z |zn]))

Z o, f. i),

(10)

afm;fi =

where oy, ¢, denotes the importance between feature f,,, and
fi in each attention head, and a € R24 denots the weight
vector of each head. The output embedding matrix H? € R™*4
is then reduced in the last dimension and then concatenated to
the input node features, which can be formulated as follows:

num + ms:;t) + g(tl)wra
SQUEEZE(H'W ,,.,;))

where W,,,.,; € R! and SQUEEZE denotes squeezing
matrix in the last dimension. Therefore, our fraud detection
model is enhanced by the integration of neighbor risk-aware
embeddings and is capable of better modeling temporal fraud
patterns. Algorithm 2 demonstrates the detailed computation
of risk-aware embeddings.

= CONCAT(zt:)
Tt (@ (11)

C. Loss Function and Model Optimization

Unlike traditional credit card fraud detection solutions, our
novel RGTAN model employs a semi-supervised approach
by propagating transaction attributes, risk embeddings, and
neighbor risk-aware features across both labeled and unlabeled
transactions to train our model. Employing an unmasked
objective in our fraud detection model would lead to label
leakage during training, causing the model to rely solely on
observed labels and ignore complex hidden fraud patterns that
are crucial for predicting future fraudulent activities.

To mitigate this, we adopt a training strategy that learns
from the risk information of neighboring transactions rather
than direct labels of individual transactions. Specifically, we
employ a masked training approach where each training step
involves randomly sampling a set of center nodes along with
their corresponding neighbors. We transform Y into Y by
setting the risk embeddings of the center nodes to zero and
maintaining the others. Additionally, to better capture fraud
patterns from neighboring transactions, we integrate risk in-
formation from these neighbors directly into node features. To
prevent potential label leakage, we apply a multi-hop masking
strategy, setting the risk feature from k-hop neighbors ( f,,’?is &)
of center nodes to zero during training. The objective function
is structured as follows:

vl
RE= Z
(1—yz*) -log(1 — p(3:/X, Y, A))],

where |V indicates the number of center nodes with masked
labels. This strategy ensures our training avoids self-loop risk

log p(3:X, Y, A)+ (12)

TABLE I
STATISTICS OF THE THREE FRAUD DETECTION DATASETS.

Dataset YelpChi Amazon FFSD
#Node 45,954 11,948 1,820,840
#Edge 7,739,912 8,808,728 31,619,440
#Fraud 6,677 821 33,858
#Legitimate 39,277 11,127 141,861
#Unlabeled - - 1,645,121

information leakage. During inference, all observed labels Y
are used as input categorical attributes to predict transaction
risks outside the training dataset. Ultimately, our model’s
optimization goal is to capture fraud patterns by leveraging
attribute information from neighboring transaction nodes, in-
cluding risk and neighbor risk-aware embeddings, alongside
the attribute information of the nodes themselves, excluding
direct risk details.

V. EXPERIMENTS

This section outlines the datasets employed in our study,
compares the performance of our RGTAN against other lead-
ing graph-based fraud detection models across two supervised
and one semi-supervised datasets, discusses the results of
ablation studies on two variants of our model, and highlights
findings from real-world case studies where our approach
notably excels in identifying typical fraud patterns.

A. Experiment Settings

1) Datasets: To our knowledge, there are no publicly
available semi-supervised datasets specifically for credit card
fraud detection. Thus, we have compiled a dataset from a
leading global financial institution, referred to as the Financial
Fraud Semi-supervised Dataset (FFSD), which includes real-
world credit card transactions over a ten-month period. Labels
for these transactions were derived from consumer reports
and validations by financial experts. Transactions confirmed
as fraudulent are labeled as 1, and all others as 0.

Furthermore, we conducted experiments on two publicly
accessible supervised fraud detection datasets. The YelpChi
dataset [47] comprises hotel and restaurant reviews from
Yelp, structured into a graph where nodes represent reviews
equipped with 32-dimensional features, and edges represent
relationships among these reviews. The Amazon dataset [48]
consists of musical instrument reviews, where nodes are user
reviews featuring 25-dimensional attributes, and edges delin-
eate the interactions among these reviews. Essential statistics
for these datasets are presented in Table I.

2) Compared Methods.: To demonstrate the efficacy of
our proposed GTAN, we benchmark against several well-
established methods:

e GEM. This heterogeneous GNN model is adapted
from [49] with a learning rate set to 0.1 and neighbor
hops limited to 5.

e FdGars. A graph convolutional network for fraudster
detection from [50], with adjustments including a learning
rate of 0.01 and a hidden dimension of 256.
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TABLE II
FRAUD DETECTION PERFORMANCE OF VARIOUS METHODS ON THREE DATASETS: YELPCHI, AMAZON, AND FFSD. THE EVALUATION METRICS USED
ARE THE AREA UNDER THE ROC CURVE (AUC), MACRO AVERAGE OF F1 SCORE (F1-MACRO), AND AVERAGE PRECISION (AP). AMONG THE METHODS,
RGTAN STANDS OUT WITH THE HIGHEST AUC AND AP SCORES ON ALL THREE DATASETS. RGTAN’S EXCELLENT PERFORMANCE ON YELPCHI
DATASET WITH AUC SCORE OF 0.9498, F1-MACRO SCORE OF 0.8492*, AND AP SCORE OF 0.8241 1S PARTICULARLY NOTEWORTHY.

YelpChi Amazon FFSD
Dataset

AUC F1 AP AUC Fl1 AP AUC F1 AP
GEM 0.5270 0.1060 0.1807 0.5261 0.0941 0.1159 0.5383 0.1490 0.1889
Player2Vec 0.7003 0.4121 0.2473 0.6185 0.2451 0.1291 0.5278 0.2147 0.2041
FdGars 0.7332 0.4420 0.2709 0.6556 0.2713 0.1438 0.6965 0.4089 0.2449
Semi-GNN 0.5161 0.1023 0.1811 0.7063 0.5492 0.2254 0.5473 0.4485 0.2758
GraphSAGE 0.5364 0.4508 0.1712 0.7502 0.5795 0.2624 0.6527 0.5370 0.3844
GraphConsis 0.7060 0.6041 0.3331 0.8782 0.7819 0.7336 0.6579 0.5466 0.3876
CARE-GNN 0.7934 0.6493 0.4268 0.9115 0.8531 0.8219 0.6623 0.5771 0.4060
PC-GNN 0.8174 0.6682 0.4810 0.9581 0.9153 0.8549 0.6795 0.6077 0.4487
GTAN 0.9241 0.7988 0.7513 0.9630 0.9213 0.8838 0.7616 0.6764 0.5767
RGTAN 0.94987* 0.8492%* 0.8241* 0.9705%* 0.9198 0.8925% 0.7680* 0.6800* 0.5786*

o Player2Vec. This attributed heterogeneous information
network model from [51] follows the parameter settings
of the FdGars.

o Semi-GNN. A semi-supervised attentive network focusing
on financial fraud, sourced from [9], with a learning rate
of 0.001.

o GraphSAGE. An inductive learning approach from [35],
where the embedding dimension is set at 128.

o GraphConsis. This model addresses inconsistency issues
in GNNs and is based on [13] using its default settings.

e CARE-GNN. Focused on relational graph fraud detection,
this model from [12] uses its standard parameters.

e PC-GNN. Designed to tackle class imbalance, this model
from [10] also follows default settings.

o GTAN. Our attribute-driven semi-supervised attention
network based on the framework in [16], using standard
parameters.

o« RGTAN. Our risk-aware gated temporal attention net-
work includes three variants (RGTAN-A, RGTAN-R,
RGTAN-N) that test different aspects of our model by
excluding the temporal graph attention, risk embedding,
and risk-aware representations, respectively. The model
incorporates 2-hop neighborhood risk-aware embeddings,
with settings including a batch size of 128, learning
rate of 0.002, input dropout of 0.2, four attention heads,
hidden dimension d of 256, and uses the Adam optimizer
over 25 epochs with early stopping.

3) Evaluation Metrics: Our performance metrics for credit
card and opinion fraud detection involve the area under the
ROC curve (AUC), macro average of the F1 score (F1-macro),
and average precision (AP). These metrics are computed as
follows:

The calculations for these metrics start by determining the
True Positives Npp (correctly identified positive instances),
False Positives Nrp (incorrectly identified positive instances),
and False Negatives Nry (missed negative instances). The F1-
macro score and AP are then co lputed using F'lmacro =
7y i =1"2L M and AP = Y| (Ri — Ri1)P;, where
P = Nrp/(Nrp + Npp) and R; = NTP/(NTP + Npn).
AUC, representing the area under the ROC curve, is also

o
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Fig. 4. The result of semi-supervised experiments with different ratios of
labeled training data. The left is the performance of CRAE-GNN, PC-GNN
and RGTAN on YelpChi dataset, with the training ratio ranging from 0.1
to 0.8, which generally displays an upward trend with more data used for
training. The right is the compared performance on Amazon dataset and
roughly exhibits the same trend.

reported for our experiments.

B. Fraud Detection Experiment

In the YelpChi and Amazon datasets, the ratio of training
to testing data was established at 2:3. For the FFSD dataset,
transactions from the initial seven months serve as the training
set, while transactions from the subsequent three months
(August, September, and October of 2021) are analyzed for
fraud detection. Each method undergoes ten trials, and the
mean outcomes are summarized in Table II. The statistical
significance of enhancements is indicated by *, validated
through a paired t-test where the p-value is below 0.01.

Table II first outlines the performances of traditional graph-
based models such as GEM, Player2Vec, FdGars, Semi-GNN,
and GraphSASE in its initial five rows. The analysis reveals
GEM’s underwhelming performance, underscoring its limita-
tions in addressing complex fraud scenarios due to its shallow
architecture. Both Player2Vec and FdGars exhibited better
results, likely owing to their increased model capacities. Semi-
GNN and GraphSAGE, performing comparably and outstrip-
ping the earlier three, underscore the benefits of employing
deep graph-based learning models for fraud detection.

Further down, the inclusion of transaction graphs within
the learning framework allows PC-GNN to outperform the
previous models mentioned, yielding more robust results. The
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Fig. 5. The ablation study results on three datasets. Gray bars represent the RGTAN-A variant, yellow bars represent the RGTAN-R variant, blue bars represent
the RGTAN-N model and red bars represent the RGTAN model. The removal of GTGA component across three datasets in RGTAN-A lead to a dramatic
performance drop. Discarding either risk embedding or neighbor risk-aware embedding results in a certain degree of performance deterioration.

effectiveness of employing graph features in detecting fraudu-
lent transactions is strongly demonstrated. GTAN outperforms
the previous methods across all three datasets, validating the
expressiveness of the temporal gated attention mechanism.
The last row of Table II presents the results of our proposed
method, RGTAN, which successfully outperforms all baselines
with at least 2.5%, 0.75%, and 0.64% AUC improvements
across the three datasets, respectively. Furthermore, RGTAN
outperforms other baselines by at least 7.3%, 0.9%, and
0.2% AP improvements across the three datasets, respectively,
strongly demonstrating the effectiveness of our risk-aware
embeddings to capture multi-hop risk structure and higher-
order risk patterns.

C. Risk-aware Semi-supervised Experiment

To assess the effectiveness of semi-supervised learning,
we conducted experiments with varying ratios of labeled
and unlabeled data in the training set. To streamline the
presentation of our findings, we focus on two of the most
competitive baselines, namely PC-GNN and CARE-GNN, and
use them as a point of comparison for the subsequent semi-
supervised experiments. Specifically, we vary the proportion
of training nodes from 10% to 80% in increments of 10%,
while keeping the remaining nodes as the test set for each
experiment. Our experiments are conducted on fully annotated
datasets, YelpChi and Amazon, to enable us to explore a wider
range of labeled data ratios. The results of our experiments are
displayed in Figure 4.

Our analysis of the YelpChi dataset reveals that RGTAN
consistently outperforms the other models under different
training ratios. Even in scenarios with a limited number
of labeled data (i.e., 10% training ratio), RGTAN performs
well. Moreover, as the number of labeled data increases, the
performance of RGTAN steadily improves despite some minor
fluctuations. Similarly, our experiments on the Amazon dataset
show that RGTAN consistently achieves the best performance
across different training ratios. Compared to the YelpChi
dataset, the RGTAN model exhibits less sensitivity to changes
in the training ratio on the Amazon dataset, with no more than
a 5% variation in AUC. These results suggest that RGTAN can
perform well even with a small proportion of labeled data (as
low as 10%).

In conclusion, our experiments demonstrate the robustness
of the RGTAN model to changes in training ratio and its
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Fig. 6. Parameter sensitivity analysis with respect to (a) the number of GNN
layers; (b) the number of temporal edges per node; (c) hidden dimension; and
(d) the batch size. (a) shows that the performance of our model reaches the
highest when the number of GNN layers is set to 2, and it slightly decreases
when the number of layers continues to increase possibly due to the over-
smoothing problem. (b) demonstrates that our model is robust to the choice
of hidden dimension, with the overall AUC fluctuating by less than 5%. (c)
illustrates that RGATN achieves the optimal performance when the batch size
is 128, yet it is not sensitive to the choice of batch size, with the AUC under
all settings varying by less than 3%. (d) exhibits high robustness to the setting
of convolutional embedding layers, with the overall AUC fluctuating by less
than 1%.

consistent superiority over PC-GNN and CARE-GNN in semi-
supervised learning. These findings underscore the effective-
ness of the RGTAN model in this domain.

D. Ablation Study

To test the effectiveness of each key component in our
model, we evaluate three variants: RGTAN-A, RGTAN-R
and RGTAN-N. RGTAN-A ablates the GTGA component
and aggregates messages from neighboring nodes with equal
weights, which means it fails to utilize the temporal graph
attention mechanism to adaptively adjust the weights of neigh-
bor nodes based on their importance for fraud detection.
RGTAN-R ablates the risk embedding component and only
uses the original node attributes X without considering the risk
propagation process. This variant does not capture the credit
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card fraud patterns from transaction risk propagation and only
models the transaction embeddings from other attributes that
are not related to risk propagation. In the RGTAN-N model,
neighbor risk-aware embedding layers are removed to test its

usability and validity. This variant RGTAN-N is incapable of !

capturing the high-order adjacent fraud patterns.

Figure 5 compares the performance of our model (RGTAN)
and its three variants that ablate different components:
RGTAN-A, RGTAN-R and RGTAN-N. The grey bars indicate
that RGTAN-A, which removes the temporal graph attention
mechanism, has the lowest scores among the four models. This
demonstrates that the temporal graph attention mechanism is
crucial for reweighting the temporal transaction neighbors and
capturing their importance for fraud detection. The yellow
bars show that RGTAN-R, which removes the risk embedding
component, also performs worse than RGTAN, indicating that
the risk embedding is conducive to modeling credit card
fraud patterns from transaction risk propagation. The blue bars
represent RGTAN-N, which removes the neighbor risk-aware
embedding layers. RGTAN-N gains the second-highest scores
among the four models, which also validates the effectiveness
of neighbor risk-aware embedding in enhancing the capacity of
RGTAN to detect fraud patterns. In summary, removing either
component deteriorates the performance of RGTAN, which
proves that the temporal graph attention mechanism, risk
embedding and neighborhood risk representation are effective
in graph-based credit card fraud detection.

E. Parameter Sensitivity Experiment

In this section, we explore the sensitivity of our model’s
parameters by adjusting the number of temporal graph atten-
tion layers, hidden dimensions, batch size, and convolutional
embedding layers. The findings from our tests on the YELP
dataset are shown in Figure 6.

Our analysis starts with evaluating the impact of varying
the number of temporal graph attention layers, testing from 1
to 10 layers as seen in Figure 6(a). The model’s performance
is consistent up to 10 layers of GNN. Increasing the number
of hidden layers allows our model to incorporate temporal
information from broader neighborhoods. Optimal results are
observed with two GNN layers, where both AUC and AP
scores are maximized, setting our standard layer depth at
2. Beyond this, adding more GTGA layers slightly reduces
performance, potentially due to the over-smoothing effect on
transaction embeddings as discussed in [52].

Next, we assess how changes in the hidden dimension,
ranging from 4 to 1024, influence the model’s effectiveness in
Figure 6(b). The model exhibits stable performance throughout
various hidden dimensions, peaking at a dimension of 256.
Furthermore, Figure 6(c) reveals that the ideal batch size
for our RGTAN model is 64. Despite minimal sensitivity to
changes in the hidden dimension and batch size—showing less
than 3% variation in AUC for dimensions between 16 and
1024—we opt for a batch size of 128 to enhance training
efficiency. Lastly, the stability of our risk-aware representa-
tion learning mechanism is tested by altering the number of
convolutional embedding layers from 2 to 10, as depicted in
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Fig. 7. The case studies on two typical fraud patterns: (a) fraudulent
transactions can be hidden by a deep transaction chain; (b) over multiple
links, multiple fraudulent transactions let money separately enter the same
cardholder.

Figure 6(d). The performance of our RGTAN model remains
robust, with less than 1% fluctuation in overall AUC.

VI. CASE STUDIES

With the development of rule-based and machine learning-
based fraud detection systems, today’s credit card fraud is not
simply an individual risk. For example, one of the cardholder’s
credit cards fell to the ground and was picked up by others.
Instead, today’s credit card fraud patterns have multi-hop
temporal connections that form a transaction chain. As shown
in Figure 7, according to the practical experience in credit card
fraud detection, there are two typical types of fraud transaction
chains. According to Figure 7(a), the money flows between
multi-hop neighbors, and the end of this deep transaction
chain is hidden by a long series of ‘legitimate’ transactions. In
Figure 7(b), the money flows through multiple pipelines, and
the end of this wide transaction chain is hidden by multi-source
‘legitimate’ transactions. In these cases, cardholders and rule-
based fraud detection systems can only report the beginning of
the transaction chains, while the end transactions of such fraud
chains are difficult to detect by traditional machine learning
algorithms due to their incapability to model relations among
transaction chains. Therefore, detecting such cases requires a
large number of effort from reviewers in card issuers.

We conduct case studies in a world-leading card issuer to
validate the performance of detecting typical fraud patterns.
Specifically, we select all transactions matching end-of-chain
fraud patterns (i.e., case 1 and case 2 illustrated in Figure 7)
from manually annotated cases. Then, an equal number of
legitimate transactions are randomly selected among all trans-
actions as the legitimate samples of the two cases, respectively.
Then, we calculate the AUC and AP of the predicted results in
these two groups of transactions, respectively. Table III reports
the performance of 5 methods in detecting the end of chains of
two typical types of fraud. Based on the first four rows, GTAN
far outperforms all previous baselines with 16.0% and 14.9%
AUC improvements and 19.5% and 17.4% AP improvements.
According to the last two rows of Table III, the results show
that our method RGTAN outperforms GTAN with 2.3% and
2.0% AUC improvements and 2.2% and 2.1% AP improve-
ments. This demonstrates the effectiveness of our proposed
RGTAN for identifying real-world human brain-armed credit
card fraud patterns. The high capability in detecting complex
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TABLE III
EVALUATION RESULTS ON DETECTING THE END OF TWO TYPES OF fraud
transaction chains. OUR PROPOSED MODEL OUTPERFORMS OTHER
BASELINES SIGNIFICANTLY IN DETECTING THESE TWO FRAUD PATTERNS.

Case 1 Case 2
AUC AP AUC AP
GraphConsis  0.6178 0.3625  0.6626 0.4002
CARE-GNN  0.6274 0.3576  0.6715 0.4128
PC-GNN 0.6431 0.4251 0.6933 0.4656
GTAN 0.7932 0.6108 0.8321 0.6298
RGTAN 0.8167* 0.6325% (.8518* 0.6504*

fraud patterns may be the main source of performance gain of
our substantial improvement approach.

VII. CONCLUSION AND FUTURE WORK

In this study, we tackled the significant practical challenge
of credit card fraud detection. We developed an effective semi-
supervised method that utilizes temporal transaction graphs
and employs attribute-driven gated temporal attention net-
works due to the intensive and expensive nature of fraud
transaction labeling. Our model introduces an attribute rep-
resentation and risk propagation mechanism to accurately
identify fraud patterns, considering the widespread categorical
attributes and manually annotated labels. We introduced the
use of neighborhood risk-aware representations to enhance the
RGTAN’s ability to discern local risk factors, highlighting the
relevance of adjacent risk structures in detecting fraud. Our
comprehensive testing demonstrated that our proposed meth-
ods outperform existing baselines across three datasets dedi-
cated to fraud detection. The semi-supervised tests highlighted
our model’s exceptional ability to detect fraud using only a
small portion of labeled data. Additionally, our case stud-
ies, which examined transaction chain propagation, revealed
underlying fraud patterns, affirming our model’s capacity to
identify real-world fraudulent activities. Our methodology is
progressing towards becoming an essential element of a real-
world credit card fraud analysis system used by leading
global card issuers, benefiting over a hundred million users.
Despite its strong detection capabilities, the model still faces
challenges with the computational complexity of analyzing
high-order fraud patterns. Future work will focus on refining
the detection of risk-aware fraud patterns more effectively and
efficiently.
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